Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use south pole telescope to produce the most detailed images of the early universe

13.12.2002


Using a powerful new instrument at the South Pole, a team of cosmologists has produced the most detailed images of the early Universe ever recorded. The research team, which was funded by the National Science Foundation (NSF), has made public their measurements of subtle temperature differences in the Cosmic Microwave Background (CMB) radiation. The CMB is the remnant radiation that escaped from the rapidly cooling Universe about 400,000 years after the Big Bang. Images of the CMB provide researchers with a snapshot of the Universe in its infancy, and can be used to place strong constraints on its constituents and structure. The new results provide additional evidence to support the currently favored model of the Universe in which 30 percent of all energy is a strange form of dark matter that doesn’t interact with light and 65 percent is in an even stranger form of dark energy that appears to be causing the expansion of the Universe to accelerate. Only the remaining five percent of the energy in the Universe takes the form of familiar matter like that which makes up planets and stars.

The researchers developed a sensitive new instrument, the Arcminute Cosmology Bolometer Array Receiver (ACBAR), to produce high-resolution images of the CMB. ACBAR’s detailed images reveal the seeds that grew to form the largest structures seen in the Universe today. These results add to the description of the early Universe provided by several previous ground-, balloon- and space-based experiments. Previous to the ACBAR results, the most sensitive, fine angular scale CMB measurements were produced by the NSF-funded Cosmic Background Investigator (CBI) experiment observing from a mountaintop in Chile.

William Holzapfel, of the University of California at Berkeley and ACBAR co-principal investigator, said it is significant that the new ACBAR results agree with those published by the CBI team despite the very different instruments, observing strategies, analysis techniques, and sources of foreground emission for the two experiments. He added that the new data provide a more rigorous test of the consistency of the new ACBAR results with theoretical predictions.

"It is amazing how precisely our theories can explain the behavior of the Universe when we know so little about the dark matter and dark energy that comprise 95 percent of it," said Holzapfel.

The dark energy inferred from the ACBAR observations may be responsible for the accelerating expansion of the Universe. "It is compelling that we find, in the ancient history of the Universe, evidence for the same dark energy that supernova observations find more recently," said Jeffrey Peterson of Carnegie Mellon University.

The construction of the ACBAR instrument and observations at the South Pole were carried out by a team of researchers from the University of California, Berkeley, Case Western Reserve University, Carnegie Mellon University, the California Institute of Technology, Jet Propulsion Laboratory (JPL), and Cardiff University in the United Kingdom. Principle investigators Holzapfel and John Ruhl at Case Western led the effort, which built and deployed the instrument in only two years.

ACBAR is specifically designed to take advantage of the unique capabilities of the 2.1-meter Viper telescope, built primarily by Jeff Peterson and collaborators at Carnegie Mellon and installed by NSF and its South Pole Station in Antarctica. The receiver is an array of 16 detectors built by Cal Tech and the JPL that create images of the sky in 3-millimeter wavelength bands near the peak in the brightness of the CMB. In order to reach the maximum possible sensitivity, the ACBAR detectors are cooled to two-tenths of a degree above absolute zero, or about -273 degrees Celsius (-459 Fahrenheit). ACBAR has just completed its second season of observations at the South Pole. Researcher Mathew Newcomb kept the telescope observing continuously during the six month-long austral winter, despite temperatures plunging below -73 degrees Celsius (-100 Fahrenheit).

The construction of ACBAR and Viper was funded as part of the NSF Center for Astrophysical Research in Antarctica. The U.S. Antarctic Program provides continuing support for telescope maintenance, observations, and data analysis. NSF’s Amundsen Scott South Pole Station is ideally suited for astronomy, especially observations of the CMB. The station is located at an altitude of approximately 3,000 meters (10,000 feet), atop the Antarctic ice sheet. Water vapor is the principal cause of atmospheric absorption in broad portions of the electromagnetic spectrum from near infrared to microwave wavelengths. The thin atmosphere above the station is extremely cold and contains almost no water vapor. "Our atmosphere may be essential to life on Earth," said Ruhl, "but we’d love to get rid of it. For our observations, the South Pole is as close as you can get to space while having your feet planted firmly on the ground."

Papers describing the ACBAR CMB angular power spectrum and the constraints it places on cosmological parameters have been submitted to the Astrophysical Journal for publication.



Media Contacts:
Leslie Fink, National Science Foundation
(703) 292-8070
lfink@nsf.gov



Robert Sanders, University of California, Berkeley
(510) 643-6998/
rls@pa.urel.berkeley.edu

Teresa Thomas, Carnegie Mellon University
(412) 268-3580
thomas@cmu.edu

Program contacts:
William Holzapfel, University of California, Berkeley
(510) 642-5036
swlh@cosmology.berkeley.edu

John Ruhl, Case Western Reserve University
(216) 368-4049
ruhl@cwru.edu

Jeff Peterson, Carnegie Mellon University
(412) 472-1918
jbp@cmu.edu

Leslie Fink | NSF
Further information:
http://cosmology.berkeley.edu/group/swlh/acbar

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>