Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use south pole telescope to produce the most detailed images of the early universe

13.12.2002


Using a powerful new instrument at the South Pole, a team of cosmologists has produced the most detailed images of the early Universe ever recorded. The research team, which was funded by the National Science Foundation (NSF), has made public their measurements of subtle temperature differences in the Cosmic Microwave Background (CMB) radiation. The CMB is the remnant radiation that escaped from the rapidly cooling Universe about 400,000 years after the Big Bang. Images of the CMB provide researchers with a snapshot of the Universe in its infancy, and can be used to place strong constraints on its constituents and structure. The new results provide additional evidence to support the currently favored model of the Universe in which 30 percent of all energy is a strange form of dark matter that doesn’t interact with light and 65 percent is in an even stranger form of dark energy that appears to be causing the expansion of the Universe to accelerate. Only the remaining five percent of the energy in the Universe takes the form of familiar matter like that which makes up planets and stars.

The researchers developed a sensitive new instrument, the Arcminute Cosmology Bolometer Array Receiver (ACBAR), to produce high-resolution images of the CMB. ACBAR’s detailed images reveal the seeds that grew to form the largest structures seen in the Universe today. These results add to the description of the early Universe provided by several previous ground-, balloon- and space-based experiments. Previous to the ACBAR results, the most sensitive, fine angular scale CMB measurements were produced by the NSF-funded Cosmic Background Investigator (CBI) experiment observing from a mountaintop in Chile.

William Holzapfel, of the University of California at Berkeley and ACBAR co-principal investigator, said it is significant that the new ACBAR results agree with those published by the CBI team despite the very different instruments, observing strategies, analysis techniques, and sources of foreground emission for the two experiments. He added that the new data provide a more rigorous test of the consistency of the new ACBAR results with theoretical predictions.

"It is amazing how precisely our theories can explain the behavior of the Universe when we know so little about the dark matter and dark energy that comprise 95 percent of it," said Holzapfel.

The dark energy inferred from the ACBAR observations may be responsible for the accelerating expansion of the Universe. "It is compelling that we find, in the ancient history of the Universe, evidence for the same dark energy that supernova observations find more recently," said Jeffrey Peterson of Carnegie Mellon University.

The construction of the ACBAR instrument and observations at the South Pole were carried out by a team of researchers from the University of California, Berkeley, Case Western Reserve University, Carnegie Mellon University, the California Institute of Technology, Jet Propulsion Laboratory (JPL), and Cardiff University in the United Kingdom. Principle investigators Holzapfel and John Ruhl at Case Western led the effort, which built and deployed the instrument in only two years.

ACBAR is specifically designed to take advantage of the unique capabilities of the 2.1-meter Viper telescope, built primarily by Jeff Peterson and collaborators at Carnegie Mellon and installed by NSF and its South Pole Station in Antarctica. The receiver is an array of 16 detectors built by Cal Tech and the JPL that create images of the sky in 3-millimeter wavelength bands near the peak in the brightness of the CMB. In order to reach the maximum possible sensitivity, the ACBAR detectors are cooled to two-tenths of a degree above absolute zero, or about -273 degrees Celsius (-459 Fahrenheit). ACBAR has just completed its second season of observations at the South Pole. Researcher Mathew Newcomb kept the telescope observing continuously during the six month-long austral winter, despite temperatures plunging below -73 degrees Celsius (-100 Fahrenheit).

The construction of ACBAR and Viper was funded as part of the NSF Center for Astrophysical Research in Antarctica. The U.S. Antarctic Program provides continuing support for telescope maintenance, observations, and data analysis. NSF’s Amundsen Scott South Pole Station is ideally suited for astronomy, especially observations of the CMB. The station is located at an altitude of approximately 3,000 meters (10,000 feet), atop the Antarctic ice sheet. Water vapor is the principal cause of atmospheric absorption in broad portions of the electromagnetic spectrum from near infrared to microwave wavelengths. The thin atmosphere above the station is extremely cold and contains almost no water vapor. "Our atmosphere may be essential to life on Earth," said Ruhl, "but we’d love to get rid of it. For our observations, the South Pole is as close as you can get to space while having your feet planted firmly on the ground."

Papers describing the ACBAR CMB angular power spectrum and the constraints it places on cosmological parameters have been submitted to the Astrophysical Journal for publication.



Media Contacts:
Leslie Fink, National Science Foundation
(703) 292-8070
lfink@nsf.gov



Robert Sanders, University of California, Berkeley
(510) 643-6998/
rls@pa.urel.berkeley.edu

Teresa Thomas, Carnegie Mellon University
(412) 268-3580
thomas@cmu.edu

Program contacts:
William Holzapfel, University of California, Berkeley
(510) 642-5036
swlh@cosmology.berkeley.edu

John Ruhl, Case Western Reserve University
(216) 368-4049
ruhl@cwru.edu

Jeff Peterson, Carnegie Mellon University
(412) 472-1918
jbp@cmu.edu

Leslie Fink | NSF
Further information:
http://cosmology.berkeley.edu/group/swlh/acbar

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>