Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nu Approach to CP Violation

21.11.2002


The measured abundance of helium in the universe (about 25% of all normal matter) suggests that there is about one proton for every 1010 photons. This in turn suggests that at some earlier phase of the universe an almost equal number of protons and anti-protons existed and gradually annihilated, but that because of some fundamental asymmetry (at the level of one part per ten billion) in the way that the weak nuclear force treats matter and antimatter, protons but not anti-protons survived to the present time.

The standard model of particle physics usually enshrines this asymmetry in the form of "CP violation," a mathematical convention concerning the interaction of particles in which one imagines what happens when the charge of all the particles is reversed (charge conjugation, abbreviated as C) and the coordinates of all particles is reversed (the parity operation, or P).The standard model is successful in predicting how CP violation works out in the decay of K mesons or B mesons (see Update 600) but not so good at predicting where the abundance of baryons (protons plus neutrons) comes from.


Now physicists at Hiroshima University, Niigata University (Japan) and Seoul National University (Korea) have proposed an explanation in which the proton excess comes (at least in part) from the decay of hypothetical heavy neutrinos (in addition to the electron, muon, and tau neutrinos already known). One testable prediction of this theory is that there should be a slight preponderance of anti-neutrinos over neutrinos, a disparity that could be studied in the next round of neutrino oscillation experiments being planned. (Endoh et al., Physical Review Letters, 2 December 2002; contact Takuya Morozumi, Hiroshima University, morozumi@hiroshima-u.ac.jp, 81-824-24-7364.)


Phil Schewe | Physics news update 614
Further information:
http://www.aip.org/enews/physnews/2002/split/600-1.html
http://link.aps.org/abstract/PRL/v89/e231601

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>