Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nu Approach to CP Violation

21.11.2002


The measured abundance of helium in the universe (about 25% of all normal matter) suggests that there is about one proton for every 1010 photons. This in turn suggests that at some earlier phase of the universe an almost equal number of protons and anti-protons existed and gradually annihilated, but that because of some fundamental asymmetry (at the level of one part per ten billion) in the way that the weak nuclear force treats matter and antimatter, protons but not anti-protons survived to the present time.

The standard model of particle physics usually enshrines this asymmetry in the form of "CP violation," a mathematical convention concerning the interaction of particles in which one imagines what happens when the charge of all the particles is reversed (charge conjugation, abbreviated as C) and the coordinates of all particles is reversed (the parity operation, or P).The standard model is successful in predicting how CP violation works out in the decay of K mesons or B mesons (see Update 600) but not so good at predicting where the abundance of baryons (protons plus neutrons) comes from.


Now physicists at Hiroshima University, Niigata University (Japan) and Seoul National University (Korea) have proposed an explanation in which the proton excess comes (at least in part) from the decay of hypothetical heavy neutrinos (in addition to the electron, muon, and tau neutrinos already known). One testable prediction of this theory is that there should be a slight preponderance of anti-neutrinos over neutrinos, a disparity that could be studied in the next round of neutrino oscillation experiments being planned. (Endoh et al., Physical Review Letters, 2 December 2002; contact Takuya Morozumi, Hiroshima University, morozumi@hiroshima-u.ac.jp, 81-824-24-7364.)


Phil Schewe | Physics news update 614
Further information:
http://www.aip.org/enews/physnews/2002/split/600-1.html
http://link.aps.org/abstract/PRL/v89/e231601

More articles from Physics and Astronomy:

nachricht Rosetta’s comet contains ingredients for life
30.05.2016 | Universität Bern

nachricht Present-day measurements yield insights into clouds of the past
27.05.2016 | Paul Scherrer Institut (PSI)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>