Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Puzzle Over Unexpected Findings in ’Little’ Big Bang

12.11.2002


Scientists have recreated a temperature not seen since the first microsecond of the birth of the universe and found that the event did not unfold quite the way they expected, according to a recent paper in Physical Review Letters. The interaction of energy, matter, and the strong nuclear force in the ultra-hot experiments conducted at the Relativistic Heavy Ion Collider (RHIC) was thought to be well understood, but a lengthy investigation has revealed that physicists are missing something in their model of how the universe works.



"It’s the things you weren’t expecting that are really trying to tell you something in science," says Steven Manly, associate professor of physics and astronomy at the University of Rochester and co-author of the paper. "The basic nature of the interactions within the hot, dense medium, or at least the manifestation of it, changes depending on the angle at which it’s viewed. We don’t know why. We’ve been handed some new pieces to the puzzle and we’re just trying to figure out how this new picture fits together."

At RHIC in Brookhaven, NY., Manly and his collaborators on the PHOBOS experiment wanted to probe the nature of the strong nuclear force that helps bind atoms together. They smashed two atoms of gold together at velocities near the speed of light in an attempt to create what’s called a "quark-gluon plasma," a very brief state where the temperature is tens of thousands of times higher than the cores of the hottest stars. Particles in this hot-soup plasma stream out, but not without bumping into other particles in the soup. It’s a bit like trying to race out of a crowded room-the more people in your way, the more difficult to escape. The strength of the interactions between particles in the soup is determined by the strong force, so carefully watching particles stream out could reveal much about how the strong force operates at such high temperatures.


To simplify their observations, the researchers collided the circular gold atoms slightly off-center so that the area of impact would not be round, but shaped rather like a football-pointed at each end. This would force any streaming particles that headed out one of the tips of the football to pass through more of the hot soup than a particle exiting the side would. Differences in the number of particles escaping out the tip versus the side of the hot matter could reveal something of the nature of that hot matter, and maybe something about the strong force itself.

But a surprise was in store. Right where the gold atoms had collided, particles did indeed take longer to stream out the tips of the football than the sides, but farther from the exact point of collision, that difference evaporated. That defied a treasured theory called boost invariance.

"When we first presented this at a conference in Stony Brook, the audience couldn’t believe it," says Manly. "They said, ’This can’t be. You’re violating boost invariance.’ But we’ve gone over our results for more than a year, and it checks out."

Aside from revealing that scientists are missing a piece of the physics puzzle, the findings mean that understanding these collisions fully will be much more difficult than expected. No longer can physicists measure only the sweet spot where the atoms initially collided-they now must measure the entire length of the plasma, effectively making what was a two-dimensional problem into a three-dimensional one. As Manly says, this "dramatically increases the computing complexity" of any model researchers try to devise.

Modeling and understanding such collisions are extremely important because the way that the plasma cools-condensing like steam turning into water against a shower door-might shed some light on the mechanism that gives matter its very mass. Where mass itself comes from has been one of physicists chief conundrums for decades. Manly hopes that if we can understand exactly why the quark-gluon plasma behaves as it does, we might gain an insight into some of the rudiments of the world we live in.

"Understanding all the dynamics of the collision is really critical for actually trying to get the information we want," says Manly. "It may be that we have an actual clue here that something fundamental is different-something we just don’t understand." Smiling, he adds, "Yet.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu/
http://www.rochester.edu/pr/News/NewsReleases/scitech/manly-quark.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>