Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gravity waves analysis opens ’completely new sense’

29.10.2002


Sometime within the next two years, researchers will detect the first signals of gravity waves -- those weak blips from the far edges of the universe passing through our bodies every second. Predicted by Einstein’s theory of general relativity, gravity waves are expected to reveal, ultimately, previously unattainable mysteries of the universe.



Wai-Mo Suen, Ph.D., professor of physics at Washington University in St. Louis is collaborating with researchers nationwide to develop waveform templates to comprehend the signals to be analyzed. In this manner, researchers will be able to determine what the data represent -- a neutron star collapsing, for instance, or black holes colliding.

"In the past, whenever we expanded our band width to a different wave length region of electromagnetic waves, we found a very different universe," said Suen. "But now we have a completely new kind of wave. It’s like we have been used to experiencing the world with our eyes and ears and now we are opening up a completely new sense."


Suen discussed the observational and theoretical efforts behind this new branch of astronomy at the 40th annual New Horizons in Science Briefing, Oct. 27, 2002, at Washington University in St. Louis. The gathering of national and international science writers is a function of the Council for the Advancement of Science Writing.

Gravity waves will provide information about our universe that is either difficult or impossible to obtain by traditional means. Our present understanding of the cosmos is based on the observations of electromagnetic radiation, emitted by individual electrons, atoms, or molecules, and are easily absorbed, scattered, and dispersed. Gravitational waves are produced by the coherent bulk motion of matter, traveling nearly unscathed through space and time, and carrying the information of the strong field space-time regions where they were originally generated, be it the birth of a black hole or the universe as a whole.

This new branch of astronomy was born this year. The Laser Interferometer Gravitational Wave Observatory (LIGO) at Livingston, Louisiana, was on air for the first time last March. LIGO, together with its European counterparts, VIRGO and GEO600, and the outer-space gravitational wave observatories, LISA and LAGOS, will open in the next few years a completely new window to the universe.

Supercomputer runs Einstein equation to get templates

Suen and his collaborators are using supercomputing power from the National Center for Supercomputing Applications at the University of Illinois, Urbana-Champaign, to do numerical simulations of Einstein’s equations to simulate what happens when, say, a neutron star plunges into a black hole. From these simulations, they get waveform templates. The templates can be superimposed on actual gravity wave signals to see if the signal has coincidences with the waveform.

"When we get a signal, we want to know what is generating that signal," Suen explained. "To determine that, we do a numerical simulation of a system, perhaps a neutron star collapsing, in a certain configuration, get the waveform and compare it to what we observe. If it’s not a match, we change the configuration a little bit, do the comparison again and repeat the process until we can identify which configuration is responsible for the signal that we observe."

Suen said that intrigue about gravity waves is sky-high in the astronomy community.

"Think of it: Gravity waves come to us from the edge of the universe, from the beginning of time, unchanged," he said. "They carry completely different information than electromagnetic waves. Perhaps the most exciting thing about them is that we may well not know what it is we’re going to observe. We think black holes, for sure. But who knows what else we might find?"

Questions

Contact: Gerry Everding, Office of Public Affairs, Washington University in St. Louis, (314) 935-6375; gerry_everding@aismail.wustl.edu

Gerry Everding | EurekAlert!
Further information:
http://wugrav.wustl.edu/People/SUEN/HOME.html
http://wupa.wustl.edu/record/archive/2001/03-23-01/articles/computer.html
http://news-info.wustl.edu/News/casw/suen.html

More articles from Physics and Astronomy:

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>