Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gravity waves analysis opens ’completely new sense’

29.10.2002


Sometime within the next two years, researchers will detect the first signals of gravity waves -- those weak blips from the far edges of the universe passing through our bodies every second. Predicted by Einstein’s theory of general relativity, gravity waves are expected to reveal, ultimately, previously unattainable mysteries of the universe.



Wai-Mo Suen, Ph.D., professor of physics at Washington University in St. Louis is collaborating with researchers nationwide to develop waveform templates to comprehend the signals to be analyzed. In this manner, researchers will be able to determine what the data represent -- a neutron star collapsing, for instance, or black holes colliding.

"In the past, whenever we expanded our band width to a different wave length region of electromagnetic waves, we found a very different universe," said Suen. "But now we have a completely new kind of wave. It’s like we have been used to experiencing the world with our eyes and ears and now we are opening up a completely new sense."


Suen discussed the observational and theoretical efforts behind this new branch of astronomy at the 40th annual New Horizons in Science Briefing, Oct. 27, 2002, at Washington University in St. Louis. The gathering of national and international science writers is a function of the Council for the Advancement of Science Writing.

Gravity waves will provide information about our universe that is either difficult or impossible to obtain by traditional means. Our present understanding of the cosmos is based on the observations of electromagnetic radiation, emitted by individual electrons, atoms, or molecules, and are easily absorbed, scattered, and dispersed. Gravitational waves are produced by the coherent bulk motion of matter, traveling nearly unscathed through space and time, and carrying the information of the strong field space-time regions where they were originally generated, be it the birth of a black hole or the universe as a whole.

This new branch of astronomy was born this year. The Laser Interferometer Gravitational Wave Observatory (LIGO) at Livingston, Louisiana, was on air for the first time last March. LIGO, together with its European counterparts, VIRGO and GEO600, and the outer-space gravitational wave observatories, LISA and LAGOS, will open in the next few years a completely new window to the universe.

Supercomputer runs Einstein equation to get templates

Suen and his collaborators are using supercomputing power from the National Center for Supercomputing Applications at the University of Illinois, Urbana-Champaign, to do numerical simulations of Einstein’s equations to simulate what happens when, say, a neutron star plunges into a black hole. From these simulations, they get waveform templates. The templates can be superimposed on actual gravity wave signals to see if the signal has coincidences with the waveform.

"When we get a signal, we want to know what is generating that signal," Suen explained. "To determine that, we do a numerical simulation of a system, perhaps a neutron star collapsing, in a certain configuration, get the waveform and compare it to what we observe. If it’s not a match, we change the configuration a little bit, do the comparison again and repeat the process until we can identify which configuration is responsible for the signal that we observe."

Suen said that intrigue about gravity waves is sky-high in the astronomy community.

"Think of it: Gravity waves come to us from the edge of the universe, from the beginning of time, unchanged," he said. "They carry completely different information than electromagnetic waves. Perhaps the most exciting thing about them is that we may well not know what it is we’re going to observe. We think black holes, for sure. But who knows what else we might find?"

Questions

Contact: Gerry Everding, Office of Public Affairs, Washington University in St. Louis, (314) 935-6375; gerry_everding@aismail.wustl.edu

Gerry Everding | EurekAlert!
Further information:
http://wugrav.wustl.edu/People/SUEN/HOME.html
http://wupa.wustl.edu/record/archive/2001/03-23-01/articles/computer.html
http://news-info.wustl.edu/News/casw/suen.html

More articles from Physics and Astronomy:

nachricht A single photon reveals quantum entanglement of 16 million atoms
16.10.2017 | Université de Genève

nachricht On the generation of solar spicules and Alfvenic waves
16.10.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>