Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gravity waves analysis opens ’completely new sense’


Sometime within the next two years, researchers will detect the first signals of gravity waves -- those weak blips from the far edges of the universe passing through our bodies every second. Predicted by Einstein’s theory of general relativity, gravity waves are expected to reveal, ultimately, previously unattainable mysteries of the universe.

Wai-Mo Suen, Ph.D., professor of physics at Washington University in St. Louis is collaborating with researchers nationwide to develop waveform templates to comprehend the signals to be analyzed. In this manner, researchers will be able to determine what the data represent -- a neutron star collapsing, for instance, or black holes colliding.

"In the past, whenever we expanded our band width to a different wave length region of electromagnetic waves, we found a very different universe," said Suen. "But now we have a completely new kind of wave. It’s like we have been used to experiencing the world with our eyes and ears and now we are opening up a completely new sense."

Suen discussed the observational and theoretical efforts behind this new branch of astronomy at the 40th annual New Horizons in Science Briefing, Oct. 27, 2002, at Washington University in St. Louis. The gathering of national and international science writers is a function of the Council for the Advancement of Science Writing.

Gravity waves will provide information about our universe that is either difficult or impossible to obtain by traditional means. Our present understanding of the cosmos is based on the observations of electromagnetic radiation, emitted by individual electrons, atoms, or molecules, and are easily absorbed, scattered, and dispersed. Gravitational waves are produced by the coherent bulk motion of matter, traveling nearly unscathed through space and time, and carrying the information of the strong field space-time regions where they were originally generated, be it the birth of a black hole or the universe as a whole.

This new branch of astronomy was born this year. The Laser Interferometer Gravitational Wave Observatory (LIGO) at Livingston, Louisiana, was on air for the first time last March. LIGO, together with its European counterparts, VIRGO and GEO600, and the outer-space gravitational wave observatories, LISA and LAGOS, will open in the next few years a completely new window to the universe.

Supercomputer runs Einstein equation to get templates

Suen and his collaborators are using supercomputing power from the National Center for Supercomputing Applications at the University of Illinois, Urbana-Champaign, to do numerical simulations of Einstein’s equations to simulate what happens when, say, a neutron star plunges into a black hole. From these simulations, they get waveform templates. The templates can be superimposed on actual gravity wave signals to see if the signal has coincidences with the waveform.

"When we get a signal, we want to know what is generating that signal," Suen explained. "To determine that, we do a numerical simulation of a system, perhaps a neutron star collapsing, in a certain configuration, get the waveform and compare it to what we observe. If it’s not a match, we change the configuration a little bit, do the comparison again and repeat the process until we can identify which configuration is responsible for the signal that we observe."

Suen said that intrigue about gravity waves is sky-high in the astronomy community.

"Think of it: Gravity waves come to us from the edge of the universe, from the beginning of time, unchanged," he said. "They carry completely different information than electromagnetic waves. Perhaps the most exciting thing about them is that we may well not know what it is we’re going to observe. We think black holes, for sure. But who knows what else we might find?"


Contact: Gerry Everding, Office of Public Affairs, Washington University in St. Louis, (314) 935-6375;

Gerry Everding | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>