Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surfing a Black Hole

14.10.2002


An international team of astronomers [2], lead by researchers at the Max-Planck Institute for Extraterrestrial Physics (MPE), has directly observed an otherwise normal star orbiting the supermassive black hole at the center of the Milky Way Galaxy.

Ten years of painstaking measurements have been crowned by a series of unique images obtained by the Adaptive Optics (AO) NAOS-CONICA (NACO) instrument [3] on the 8.2-m VLT YEPUN telescope at the ESO Paranal Observatory. It turns out that earlier this year the star approached the central Black Hole to within 17 light-hours - only three times the distance between the Sun and planet Pluto - while travelling at no less than 5000 km/sec.

Previous measurements of the velocities of stars near the center of the Milky Way and variable X-ray emission from this area have provided the strongest evidence so far of the existence of a central Black Hole in our home galaxy and, implicitly, that the dark mass concentrations seen in many nuclei of other galaxies probably are also supermassive black holes. However, it has not yet been possible to exclude several alternative configurations.



In a break-through paper appearing in the research journal Nature on October 10th, 2002, the present team reports their exciting results, including high-resolution images that allow tracing two-thirds of the orbit of a star designated "S2". It is currently the closest observable star to the compact radio source and massive black hole candidate "SgrA*" ("Sagittarius A") at the very center of the Milky Way. The orbital period is just over 15 years.

The new measurements exclude with high confidence that the central dark mass consists of a cluster of unusual stars or elementary particles, and leave little doubt of the presence of a supermassive black hole at the centre of the galaxy in which we live.
The full text of this ESO Press Release, with three photos (in different sizes and resolutions) and all weblinks, is available at:

Quasars and Black Holes

Ever since the discovery of the quasars (quasi-stellar radio sources) in 1963, astrophysicists have searched for an explanation of the energy production in these most luminous objects in the Universe. Quasars reside at the centres of galaxies, and it is believed that the enormous energy emitted by these objects is due to matter falling onto a supermassive Black Hole, releasing gravitational energy through intense radiation before that material disappears forever into the hole (in physics terminology: "passes beyond the event horizon" [4]).

To explain the prodigious energy production of quasars and other active galaxies, one needs to conjecture the presence of black holes with masses of one million to several billion times the mass of the Sun. Much evidence has been accumulating during the past years in support of the above "accreting black hole" model for quasars and other galaxies, including the detection of dark mass concentrations in their central regions.

However, an unambiguous proof requires excluding all possible other, non-black hole configurations of the central mass concentration. For this, it is imperative to determine the shape of the gravitational field very close to the central object - and this is not possible for the distant quasars due to technological limitations of the currently available telescopes.

The centre of the Milky Way

The centre of our Milky Way galaxy is located in the southern constallation Sagittarius (The Archer) and is "only" 26,000 light-years away [5]. On high-resolution images, it is possible to discern thousands of individual stars within the central, one light-year wide region (this corresponds to about one-quarter of the distance to "Proxima Centauri", the star nearest to the solar system).

Using the motions of these stars to probe the gravitational field, observations with the 3.5-m New Technology Telescope (NTT) at the ESO La Silla Observatory (Chile) (and subsequently at the 10-m Keck telescope, Hawaii, USA) over the last decade have shown that a mass of about 3 million times that of the Sun is concentrated within a radius of only 10 light-days [5] of the compact radio and X-ray source SgrA* ("Sagittarius A") at the center of the star cluster.

This means that SgrA* is the most likely counterpart of the putative black hole and, at the same time, it makes the Galactic Center the best piece of evidence for the existence of such supermassive black holes. However, those earlier investigations could not exclude several other, non-black hole configurations.

"We then needed even sharper images to settle the issue of whether any configuration other than a black hole is possible and we counted on the ESO VLT telescope to provide those", explains Reinhard Genzel, Director at the Max-Planck Institute for Extraterrestrial Physics (MPE) in Garching near Munich (Germany) and member of the present team. "The new NAOS-CONICA (NACO) instrument, built in a close collaboration between our institute, the Max-Planck Institute for Astronomy (MPIA: Heidelberg, Germany), ESO and the Paris-Meudon and Grenoble Observatories (France), was just what we needed to take this decisive step forward".

The NACO observations of the Milky Way centre

The new NACO instrument [3] was installed in late 2001 at the VLT 8.2-m YEPUN telescope. Already during the initial tests, it produced many impressive images, some of which have been the subject of earlier ESO press releases [6].

"The first observations this year with NACO gave us right away the sharpest and `deepest` images of the Milky Way Centre ever taken, showing a large number of stars in that area in great detail", says Andreas Eckart of the University of Cologne, another member of the international team that is headed by Rainer Schoedel, Thomas Ott and Reinhard Genzel from MPE. "But we were still to be overwhelmed by the wonderful outcome of those data!"

Combining their infrared images with high-resolution radio data, the team was able to determine - during a ten-year period - very accurate positions of about one thousand stars in the central area with respect to the compact radio source SgrA*, see PR Photo 23c/02.

"When we included the latest NACO data in our analysis in May 2002, we could not believe our eyes. The star S2, which is the one currently closest to SgrA*, had just performed a rapid swing-by near the radio source. We suddenly realised that we were actually witnessing the motion of a star in orbit around the central black hole, taking it incredibly close to that mysterious object", says a very happy Thomas Ott, who is now working in the MPE team on his PhD thesis.

In orbit around the central black hole

No event like this one has ever been recorded. These unique data show unambiguously that S2 is moving along an elliptical orbit with SgrA* at one focus, i.e. S2 orbits SgrA* like the Earth orbits the Sun, cf. the right panel of PR Photo 23c/02.

The superb data also allow a precise determination of the orbital parameters (shape, size, etc.). It turns out that S2 reached its closest distance to SgrA* in the spring of 2002, at which moment it was only 17 light-hours [5] away from the radio source, or just 3 times the Sun-Pluto distance. It was then moving at more than 5000 km/s, or nearly two hundred times the speed of the Earth in its orbit around the Sun. The orbital period is 15.2 years. The orbit is rather elongated - the eccentricity is 0.87 - indicating that S2 is about 10 light-days away from the central mass at the most distant orbital point [7].

"We are now able to demonstrate with certainty that SgrA* is indeed the location of the central dark mass we knew existed. Even more important, our new data have "shrunk" by a factor of several thousand the volume within which those several million solar masses are contained", says Rainer Schoedel, PhD student at MPE and also first author of the resulting paper.

In fact, model calculations now indicate that the best estimate of the mass of the Black Hole at the centre of the Milky Way is 2.6 +- 0.2 million times the mass of the Sun.

No other possibilities

According to the detailed analysis presented in the Nature article, other previously possible configurations, such as very compact clusters of neutron stars, stellar size black holes or low mass stars, or even a ball of putative heavy neutrinos, can now be definitively excluded.

The only still viable non-black hole configuration is a hypothetical star of heavy elementary particles called bosons, which would look very similar to a black hole. "However", says Reinhard Genzel, "even if such a boson star is in principle possible, it would rapidly collapse into a supermassive black hole anyhow, so I think we have pretty much clinched the case!"

Next observations

"Most astrophysicists would accept that the new data provide compelling evidence that a supermassive black hole exists in the center of the Milky Way. This makes even more likely the supermassive black hole interpretation for the enormous concentration of dark mass detected at the center of many other galaxies", says Alvio Renzini, VLT Programme Scientist at ESO.

So what remains to be done? The next big quest now is to understand when and how these supermassive black holes formed and why almost every massive galaxy appears to contain one. The formation of central black holes and that of their host galaxies themselves increasingly appear to be just one problem and the same. Indeed, one of the outstanding challenges for the VLT to solve in the next few years.

There is also little doubt that coming interferometric observations with instruments at the VLT Interferometer (VLTI) and the Large Binocular Telescope (LBT) will also result in another giant leap within this exciting field of research.

Andreas Eckart is optimistic: "Perhaps it will even be possible with X-ray and radio observations in the next few years to directly demonstrate the existence of the event horizon."

More information

The information presented in this Press Release is based on a research article ("Seeing a Star Orbit around the Supermassive Black Hole at the centre of the Milky Way" by Rainer Schoedel et al.) that appears in the research journal "Nature" on October 10, 2002.

Richard West | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2002/pr-17-02.html

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>