Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Challenges of landing on alien worlds

10.10.2002


Three ESA missions are due to send down robotic `spaceprobes` when they arrive at their alien destinations. Since these craft will be going where no one has gone before, how can scientists be sure what it will be like down there? How do you ensure that your spaceprobe is prepared for anything?



Experts take every precaution to ensure that these probes will not burn up entering an alien atmosphere, or meet a spectacular, untimely end via a crash landing on inhospitable terrain. These probes expect the worst.
For example, the Huygens probe, which is currently on its journey to Titan, Saturn`s largest moon, on-board the Cassini spacecraft, can withstand temperatures of up to 18 000°C in the shockwave in front of the heat shield. This is about three times the Sun`s surface temperature. Why? The heat generated as Huygens travels through Titan`s thick atmosphere will be immense.

Jean-Pierre Lebreton, Huygens Project Scientist, says "Things will get interesting once Cassini draws close to Saturn. We`ll get the best views of Saturn and Titan that we ever had. We`ll also observe Titan to verify that our models are correct. If we find the atmospheric density is different from what we expected, we could consider slightly changing the angle at which Huygens enters to protect it from overheating or the parachute deploying wrongly. However, late changes may bring new risks."


Scientists chose the site for the landing of the Mars Express lander, Beagle 2, very carefully. Isidis Planitia, the chosen site, is largely flat without too many rocks to jeopardise a safe landing. However, Mars`s famous planetwide dust storms were taken into consideration. "Major dust storms are not expected to occur at the time and place of the landing. However, there may be strong lateral winds," says Mars Express Project Scientist Agustin Chicarro.

ESA`s Rosetta lander, which will be the first man-made object to land on a comet, has another set of challenges altogether. "Firstly, we don`t know anything about how rough the surface is," says Rosetta Project Scientist Gerhard Schwehm. "It could be covered with fluffy snow like the Alps or it could be hard rocks and craters. We can, however, be sure that it will not be smooth and flat resembling parking lots."

Scientists designed Rosetta`s landing gear to cope with most nasty surprises as soon as it touches down on Comet Wirtanen in 2011. Two harpoons will anchor the probe to the surface. The self-adjusting landing gear will ensure that it stays upright, even on a slope. The lander`s feet will drill into the ground. These devices will help counteract the fact that there is no gravity on a comet.

Observations of Mars, Titan, and Comet Wirtanen will continue frantically while the spacecrafts approach their final destination. In this way, scientists will be able to make last-minute adjustments to the timing of the landing. Information from other space missions and ground-based observations will increase scientists` understanding about the targets of the missions. In Rosetta`s case, this will help to determine the comet`s probable size and speed of rotation. These will help improve our `models` for comet behaviour. However, for Rosetta, they may come too late. "We`ll just have to see if the models we`re using are good enough" says Schwehm.

Monica Talevi | European Space Agency
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>