Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Challenges of landing on alien worlds

10.10.2002


Three ESA missions are due to send down robotic `spaceprobes` when they arrive at their alien destinations. Since these craft will be going where no one has gone before, how can scientists be sure what it will be like down there? How do you ensure that your spaceprobe is prepared for anything?



Experts take every precaution to ensure that these probes will not burn up entering an alien atmosphere, or meet a spectacular, untimely end via a crash landing on inhospitable terrain. These probes expect the worst.
For example, the Huygens probe, which is currently on its journey to Titan, Saturn`s largest moon, on-board the Cassini spacecraft, can withstand temperatures of up to 18 000°C in the shockwave in front of the heat shield. This is about three times the Sun`s surface temperature. Why? The heat generated as Huygens travels through Titan`s thick atmosphere will be immense.

Jean-Pierre Lebreton, Huygens Project Scientist, says "Things will get interesting once Cassini draws close to Saturn. We`ll get the best views of Saturn and Titan that we ever had. We`ll also observe Titan to verify that our models are correct. If we find the atmospheric density is different from what we expected, we could consider slightly changing the angle at which Huygens enters to protect it from overheating or the parachute deploying wrongly. However, late changes may bring new risks."


Scientists chose the site for the landing of the Mars Express lander, Beagle 2, very carefully. Isidis Planitia, the chosen site, is largely flat without too many rocks to jeopardise a safe landing. However, Mars`s famous planetwide dust storms were taken into consideration. "Major dust storms are not expected to occur at the time and place of the landing. However, there may be strong lateral winds," says Mars Express Project Scientist Agustin Chicarro.

ESA`s Rosetta lander, which will be the first man-made object to land on a comet, has another set of challenges altogether. "Firstly, we don`t know anything about how rough the surface is," says Rosetta Project Scientist Gerhard Schwehm. "It could be covered with fluffy snow like the Alps or it could be hard rocks and craters. We can, however, be sure that it will not be smooth and flat resembling parking lots."

Scientists designed Rosetta`s landing gear to cope with most nasty surprises as soon as it touches down on Comet Wirtanen in 2011. Two harpoons will anchor the probe to the surface. The self-adjusting landing gear will ensure that it stays upright, even on a slope. The lander`s feet will drill into the ground. These devices will help counteract the fact that there is no gravity on a comet.

Observations of Mars, Titan, and Comet Wirtanen will continue frantically while the spacecrafts approach their final destination. In this way, scientists will be able to make last-minute adjustments to the timing of the landing. Information from other space missions and ground-based observations will increase scientists` understanding about the targets of the missions. In Rosetta`s case, this will help to determine the comet`s probable size and speed of rotation. These will help improve our `models` for comet behaviour. However, for Rosetta, they may come too late. "We`ll just have to see if the models we`re using are good enough" says Schwehm.

Monica Talevi | European Space Agency
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>