Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers put quasars in their place

04.10.2002


A team of UK astronomers, led by postgraduate student Ed Hawkins, has made a decisive step toward resolving an argument that has rumbled on in the astronomical community for decades. The scientists from the University of Nottingham have been investigating the properties of quasars and nearby galaxies. As part of this study, they have overturned previous analyses which suggested that these two classes of object are physically associated, thus confirming the alternative, more widely-held view that quasars are some of the most distant objects in the Universe.



Quasars are star-like in appearance, but seem to be flying away from Earth at velocities comparable to the speed of light. The majority of astronomers believe that this high speed is a result of the expansion of the Universe, and that the quasars are traveling so fast because they are at enormous distances. However, a vociferous minority, including such notable figures as the great astronomer Fred Hoyle, has argued forcefully that quasars are much closer by. In particular, they have pointed to apparent associations between quasars and nearby galaxies, suggesting that the quasars have somehow been ejected from these galaxies in the recent past.

One of the pieces of evidence to support this idea was the tentative discovery that quasars only seem to move away from galaxies at particular speeds: for example, a surprisingly large number of quasars seem to be moving relative to neighbouring galaxies at speeds of 59% of the speed of light. If the quasars were actually on the far side of the Universe, how would they know to move at exactly 59% of the speed of light relative to a completely unrelated foreground galaxy?


Very little progress has been made toward resolving this controversy, essentially because there just hasn`t been enough data to tell whether the apparent associations between galaxies and quasars are real or just coincidences. However, this has all changed with two newly-completed huge surveys undertaken with the Anglo-Australian Telescope, one measuring the positions and velocities of 200,000 galaxies, and the other measuring the same quantities for 25,000 quasars. "These enormous new data sets offered a great opportunity to take another look at this question," said Hawkins. "To do as fair a test as possible, we discussed with the supporters of both theories what they would expect to see before we analyzed the data."

By carefully sifting through these datasets, Hawkins and collaborators found 1647 examples of quasars that appear close to galaxies, and hence might be associated. Sadly for the nearby-quasar supporters, there was no excess of quasars moving at 59% of the speed of light, or any of the other "magic speeds" that had previously been tentatively identified. Without this evidence to support an association between quasars and galaxies, the case for quasars being flung out of nearby galaxies is much weakened.

Hawkins concluded "it`s a shame, as it would have been great to find that the conventional view of quasars is all wrong. However, it`s also something of a relief to know that most astronomers have not been barking up completely the wrong tree for the last thirty years."

Prof. Michael Merrifield | alfa

More articles from Physics and Astronomy:

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

nachricht Three kinds of information from a single X-ray measurement
11.12.2017 | Friedrich-Schiller-Universität Jena

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>