Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers put quasars in their place

04.10.2002


A team of UK astronomers, led by postgraduate student Ed Hawkins, has made a decisive step toward resolving an argument that has rumbled on in the astronomical community for decades. The scientists from the University of Nottingham have been investigating the properties of quasars and nearby galaxies. As part of this study, they have overturned previous analyses which suggested that these two classes of object are physically associated, thus confirming the alternative, more widely-held view that quasars are some of the most distant objects in the Universe.



Quasars are star-like in appearance, but seem to be flying away from Earth at velocities comparable to the speed of light. The majority of astronomers believe that this high speed is a result of the expansion of the Universe, and that the quasars are traveling so fast because they are at enormous distances. However, a vociferous minority, including such notable figures as the great astronomer Fred Hoyle, has argued forcefully that quasars are much closer by. In particular, they have pointed to apparent associations between quasars and nearby galaxies, suggesting that the quasars have somehow been ejected from these galaxies in the recent past.

One of the pieces of evidence to support this idea was the tentative discovery that quasars only seem to move away from galaxies at particular speeds: for example, a surprisingly large number of quasars seem to be moving relative to neighbouring galaxies at speeds of 59% of the speed of light. If the quasars were actually on the far side of the Universe, how would they know to move at exactly 59% of the speed of light relative to a completely unrelated foreground galaxy?


Very little progress has been made toward resolving this controversy, essentially because there just hasn`t been enough data to tell whether the apparent associations between galaxies and quasars are real or just coincidences. However, this has all changed with two newly-completed huge surveys undertaken with the Anglo-Australian Telescope, one measuring the positions and velocities of 200,000 galaxies, and the other measuring the same quantities for 25,000 quasars. "These enormous new data sets offered a great opportunity to take another look at this question," said Hawkins. "To do as fair a test as possible, we discussed with the supporters of both theories what they would expect to see before we analyzed the data."

By carefully sifting through these datasets, Hawkins and collaborators found 1647 examples of quasars that appear close to galaxies, and hence might be associated. Sadly for the nearby-quasar supporters, there was no excess of quasars moving at 59% of the speed of light, or any of the other "magic speeds" that had previously been tentatively identified. Without this evidence to support an association between quasars and galaxies, the case for quasars being flung out of nearby galaxies is much weakened.

Hawkins concluded "it`s a shame, as it would have been great to find that the conventional view of quasars is all wrong. However, it`s also something of a relief to know that most astronomers have not been barking up completely the wrong tree for the last thirty years."

Prof. Michael Merrifield | alfa

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>