Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers put quasars in their place

04.10.2002


A team of UK astronomers, led by postgraduate student Ed Hawkins, has made a decisive step toward resolving an argument that has rumbled on in the astronomical community for decades. The scientists from the University of Nottingham have been investigating the properties of quasars and nearby galaxies. As part of this study, they have overturned previous analyses which suggested that these two classes of object are physically associated, thus confirming the alternative, more widely-held view that quasars are some of the most distant objects in the Universe.



Quasars are star-like in appearance, but seem to be flying away from Earth at velocities comparable to the speed of light. The majority of astronomers believe that this high speed is a result of the expansion of the Universe, and that the quasars are traveling so fast because they are at enormous distances. However, a vociferous minority, including such notable figures as the great astronomer Fred Hoyle, has argued forcefully that quasars are much closer by. In particular, they have pointed to apparent associations between quasars and nearby galaxies, suggesting that the quasars have somehow been ejected from these galaxies in the recent past.

One of the pieces of evidence to support this idea was the tentative discovery that quasars only seem to move away from galaxies at particular speeds: for example, a surprisingly large number of quasars seem to be moving relative to neighbouring galaxies at speeds of 59% of the speed of light. If the quasars were actually on the far side of the Universe, how would they know to move at exactly 59% of the speed of light relative to a completely unrelated foreground galaxy?


Very little progress has been made toward resolving this controversy, essentially because there just hasn`t been enough data to tell whether the apparent associations between galaxies and quasars are real or just coincidences. However, this has all changed with two newly-completed huge surveys undertaken with the Anglo-Australian Telescope, one measuring the positions and velocities of 200,000 galaxies, and the other measuring the same quantities for 25,000 quasars. "These enormous new data sets offered a great opportunity to take another look at this question," said Hawkins. "To do as fair a test as possible, we discussed with the supporters of both theories what they would expect to see before we analyzed the data."

By carefully sifting through these datasets, Hawkins and collaborators found 1647 examples of quasars that appear close to galaxies, and hence might be associated. Sadly for the nearby-quasar supporters, there was no excess of quasars moving at 59% of the speed of light, or any of the other "magic speeds" that had previously been tentatively identified. Without this evidence to support an association between quasars and galaxies, the case for quasars being flung out of nearby galaxies is much weakened.

Hawkins concluded "it`s a shame, as it would have been great to find that the conventional view of quasars is all wrong. However, it`s also something of a relief to know that most astronomers have not been barking up completely the wrong tree for the last thirty years."

Prof. Michael Merrifield | alfa

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>