Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space is big, but not big enough

26.09.2002


According to Douglas Adams, in his famous book The Hitch-Hikers Guide to the Galaxy, space is big. However, it seems near-Earth space is not big enough. In December 2001, the Space Shuttle pushed the International Space Station away from a discarded Russian rocket booster that was due to pass uncomfortably close. Space litter is a growing problem but smarter satellite design may help in the future.



From the beginning of the space era, satellites and deep-space probes have populated the Solar System. There are now a huge number of satellites orbiting the Earth, for different purposes including Earth observation, weather forecasting, telecommunications, military applications, and astronomy. The space around Earth is therefore becoming more and more crowded. Aside from the aspect of `space traffic control`, there is the question of what to do with space litter.

ESA`s European Space Operations Centre (ESOC) in Darmstadt, Germany, tracks space litter. It estimates that over 23 000 objects larger than 10 centimetres have been launched from Earth. Of these, about 7500 are still orbiting - only a very small proportion of them (6%) is operational. Half of all the objects are inoperable satellites, spent rocket stages, or other large space litter; the remaining 44% is debris from explosions and accidents in space. To make things worse, there are an estimated 70 000 to 120 000 fragments smaller than 1 centimetre and the amount of space debris increases by about 5% every year.


Tiny fragments, such as paint flecks, moving at very high velocities of around 6 kilometres per second can create problems for the spacecraft and for astronaut. One way to lower the threat is to remove satellites from orbit at the end of their working lives. If we force satellites down through the Earth`s atmosphere, they burn up. However, this is more complicated if the satellite is so large that parts of it are liable to survive reentry and strike the ground. This is the case for some Earth observation satellites, for example, which are very big and heavy. When removing a (dead) satellite from orbit is too difficult, it is simply left in orbit.

However ESA is developing a new technology for its Darwin mission. This technology may allow smaller, more easily disposable satellites to replace often enormous relics in the future which would improve spacecraft control.

Darwin will use a flotilla of six 2-metre-diameter telescopes, flying in tight formation, to simulate a single telescope up to 250 metres across. The new technology being developed for Darwin allows the flotilla of spacecraft to control their mutual position with extremely high accuracy. In the case of Darwin, this enables you to analyse the atmospheres of very far-away Earth-like planets with high precision and detect the chemical signatures of life. Once this technology is developed, this could also find other applications: miniaturised versions of such technology could replace large, traditional satellites. "Imagine using an array of 20-centimetre telescopes. They would be small, light and easy to mass-produce, so cheap to manufacture," says Malcolm Fridlund, ESA`s Project Scientist for the Darwin mission. They would see objects just as sharply as traditional satellites, if not better, and, at the end of their mission, scientists could ensure that they burn up in Earth`s atmosphere like shooting stars. This way we keep space cleaner.

Another improvement is to position satellites further away, to reduce `traffic jams` in near-Earth space. "This is a better position for Earth observation anyway," says Fridlund, "Because in low-Earth-orbit the satellite orbits every 90 minutes, it is only over each spot on Earth for a short period of time. In geostationary orbit, however, the satellite would be looking at one whole hemisphere continuously, so you could just point the array to wherever you are interested." Moreover, we could use Darwin`s formation-flying technology to equip every satellite with a collision-avoidance system. Unrelated satellites would communicate with their neighbours and take corrective action if they began to drift together.

Of course, nothing will completely remove the threat of space litter. However, if we can use advanced technology to remove unwanted hardware from orbit, space will definitely become safer.

Monica Talevi | alfa
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>