Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space is big, but not big enough

26.09.2002


According to Douglas Adams, in his famous book The Hitch-Hikers Guide to the Galaxy, space is big. However, it seems near-Earth space is not big enough. In December 2001, the Space Shuttle pushed the International Space Station away from a discarded Russian rocket booster that was due to pass uncomfortably close. Space litter is a growing problem but smarter satellite design may help in the future.



From the beginning of the space era, satellites and deep-space probes have populated the Solar System. There are now a huge number of satellites orbiting the Earth, for different purposes including Earth observation, weather forecasting, telecommunications, military applications, and astronomy. The space around Earth is therefore becoming more and more crowded. Aside from the aspect of `space traffic control`, there is the question of what to do with space litter.

ESA`s European Space Operations Centre (ESOC) in Darmstadt, Germany, tracks space litter. It estimates that over 23 000 objects larger than 10 centimetres have been launched from Earth. Of these, about 7500 are still orbiting - only a very small proportion of them (6%) is operational. Half of all the objects are inoperable satellites, spent rocket stages, or other large space litter; the remaining 44% is debris from explosions and accidents in space. To make things worse, there are an estimated 70 000 to 120 000 fragments smaller than 1 centimetre and the amount of space debris increases by about 5% every year.


Tiny fragments, such as paint flecks, moving at very high velocities of around 6 kilometres per second can create problems for the spacecraft and for astronaut. One way to lower the threat is to remove satellites from orbit at the end of their working lives. If we force satellites down through the Earth`s atmosphere, they burn up. However, this is more complicated if the satellite is so large that parts of it are liable to survive reentry and strike the ground. This is the case for some Earth observation satellites, for example, which are very big and heavy. When removing a (dead) satellite from orbit is too difficult, it is simply left in orbit.

However ESA is developing a new technology for its Darwin mission. This technology may allow smaller, more easily disposable satellites to replace often enormous relics in the future which would improve spacecraft control.

Darwin will use a flotilla of six 2-metre-diameter telescopes, flying in tight formation, to simulate a single telescope up to 250 metres across. The new technology being developed for Darwin allows the flotilla of spacecraft to control their mutual position with extremely high accuracy. In the case of Darwin, this enables you to analyse the atmospheres of very far-away Earth-like planets with high precision and detect the chemical signatures of life. Once this technology is developed, this could also find other applications: miniaturised versions of such technology could replace large, traditional satellites. "Imagine using an array of 20-centimetre telescopes. They would be small, light and easy to mass-produce, so cheap to manufacture," says Malcolm Fridlund, ESA`s Project Scientist for the Darwin mission. They would see objects just as sharply as traditional satellites, if not better, and, at the end of their mission, scientists could ensure that they burn up in Earth`s atmosphere like shooting stars. This way we keep space cleaner.

Another improvement is to position satellites further away, to reduce `traffic jams` in near-Earth space. "This is a better position for Earth observation anyway," says Fridlund, "Because in low-Earth-orbit the satellite orbits every 90 minutes, it is only over each spot on Earth for a short period of time. In geostationary orbit, however, the satellite would be looking at one whole hemisphere continuously, so you could just point the array to wherever you are interested." Moreover, we could use Darwin`s formation-flying technology to equip every satellite with a collision-avoidance system. Unrelated satellites would communicate with their neighbours and take corrective action if they began to drift together.

Of course, nothing will completely remove the threat of space litter. However, if we can use advanced technology to remove unwanted hardware from orbit, space will definitely become safer.

Monica Talevi | alfa
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Artificial Intelligence Helps in the Discovery of New Materials
21.09.2016 | Universität Basel

nachricht Magnetic polaron imaged for the first time
19.09.2016 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>