Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ESA to search for life, but not as we know it


This week, astrobiologists are discussing what ESA`s Huygens spaceprobe might discover when it parachutes to the surface of Saturn`s mysterious moon, Titan, in 2005. Titan possesses a rich atmosphere of organic molecules, which Huygens will analyse. Recently some scientists have begun to think that, by redefining life, in broader terms, what we may find on Titan may be life. If this is the case, it certainly will not be life as we know it...

Titan is an astrobiologist`s dream laboratory. Its atmosphere is composed of nitrogen and methane gas. Ultraviolet light from the Sun can break the methane molecules apart, leading to the formation of complex organic molecules by which scientists mean molecules containing carbon. Carbon compounds are the first step towards life, as we know it on Earth. Life, itself, is based on extremely complicated carbon molecules such as DNA. Some scientists believe the composition of Titan`s atmosphere closely resembles that of early Earth, before life began on our planet.
Huygens`s investigations may reveal how life began on Earth. Jean-Pierre Lebreton, ESA`s Project Scientist for Huygens says, "One of the key questions we hope to address is how complex the organic molecules have grown in Titan`s atmosphere."

However, organic molecules are still a long way from life itself. So, what defines life? What is the difference between the living and the non-living? Scientists are still unsure. No satisfactory definition has been found so far. Any attempt to define life`s characteristics either excludes some types of life or includes some inanimate objects. When looking for an appropriate definition of life, there is one property all scientists seem to agree on: all life needs energy to sustain its metabolism.

For example, plants use sunlight, while animals extract energy from organic molecules in the food they eat. This happens not only in these higher-level organisms, but also in the simplest forms of life on Earth, microbes. Microbes are single-cell organisms that capture their life-energy from a dizzying array of inorganic chemical reactions. Such chemical metabolisms are so different from those in the animals and plants of Earth, that astrobiologists now wonder if life could arise in any place that can sustain a rich network of chemical reactions, such as on Titan. Moreover, on Earth, microbes have adapted to the extreme environmental conditions. Scientists therefore now ask, "Could life arise on Titan?"

By all standards, Titan is an extreme and hostile environment to life, as we know it. Any life on Titan would have to be totally different from all Earthly forms. Lebreton says, "The conditions on Titan are not adequate for the kind of life we understand today. It is very cold and there is no liquid water but we should be ready for surprises." Identifying life is tricky, especially when you are unsure what to look for. Huygens`s geological and environmental investigations, and Cassini`s mapping from orbit, might record chemical anomalies or curious geological structures that warrant further investigation as possible life indicators.

Another chemically puzzling place is the planet Venus. Similarly to Titan, Venus is a world that scientists would traditionally call hostile to life, as we understand it. However, there is something odd in its clouds. Venus`s chemically laden atmosphere displays some curious phenomena, such as the planet`s ability to absorb ultraviolet radiation. Scientists cannot explain this. Some speculate that perhaps microbes in the atmosphere are responsible. If ESA`s Venus Express is given the final go-ahead later this year, it might help solve the mystery.

For centuries, scientists have struggled to define life. Space investigations present the best chance for astrobiologists to find the missing link in our understanding of what separates the living from the non-living. When we know that, we will finally have defined life here on Earth.

Jean-Pierre Lebreton | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>