Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Say ’Frustrated Magnets’ Hint at Broader Organizing Principle in Nature

27.08.2002


When "frustrated" by their arrangement, magnetic atoms surrender their individuality, stop competing with their neighbors and then practice a group version of spin control—acting collectively to achieve local magnetic order—according to scientists from the Commerce Department’s National Institute of Standards and Technology, Johns Hopkins University and Rutgers University writing in the Aug. 22, 2002, issue of the journal Nature.


Chill! Atoms in zincochromite, a "geometrically frustrated magnet," resolve their frustration through group spin control. Neighboring tetraheda (solids with four triangular faces) contribute a side each to create hexagonal (six-sided) spin clusters. A hexagon bunches the spins of magnetic atoms-one at each corner-into a single "spin director" (arrows). The composite behavior achieves local magnetic order.



The unexpected composite behavior detected in experiments done at the NIST Center for Neutron Research (NCNR) accounts for the range of surprising—and, heretofore, unexplainable—properties of so-called geometrically frustrated magnets, the subject of intensifying research efforts that may lead to new types of matter. The finding also may shed light on natural clustering processes including the assembly of quarks and other minuscule components into atoms, the folding of proteins and the clumping of stars in galaxies, the scientists say.

These and other important phenomena—including high-temperature superconductivity—suggest that there are "higher-order organizing principles that are intrinsic to nature," explains lead author Seung-Hun Lee, NCNR staff physicist.


The team discovered that self-organized "spin clusters" emerge out of competing interactions in a geometrically frustrated magnet. Though involving interactions on a very tiny scale—measured in nanometers (billionths of a meter)—the team says its discovery may provide a new model for exploring "emergent structure in complex interacting systems" on different levels. They singled out research on protein folding as a potential beneficiary. In protein folding, cells assemble units called amino acids into complex three-dimensional shapes that dictate the function of the resulting protein.

Lee and colleagues set out to determine how atoms arrayed in the lattice—like geometry of frustrated magnets resolve an apparent predicament: how to align their spins-the sources of magnetism—when faced with a bewildering number of options.

As a conventional magnet cools, atoms pair up with their neighbors and line up their spins, so that they spin in parallel or in opposition (antiparallel). At a temperature unique to the type of material, the magnet undergoes a phase transition, at which a highly symmetrical, long-range ordering of spins is achieved. The material and each spin are said to be in their ground state, a condition of equilibrium, or ultimate stability.

For illustration, this spin-ordering is accomplished easily in materials with squares as a structural building block. An atom can spin antiparallel to the spins of the atoms in the two adjacent corners.

This is not the case for a geometrically frustrated magnet, which is assembled from triangular units. If atoms at two corners spin antiparallel, the atom in the third is left with a no-win situation. Whichever orientation it chooses, the third atom will be out of sync with one of its two neighbors. As a result, the entire system is "geometrically frustrated" and all spins can fluctuate among a range of potential ground states. Long-range order is not attainable, raising the question as to how spins organize locally to cope with a seemingly confusing array of alignment options.

At the NCNR, researchers used neutrons, which are sensitive to magnetic spins, to probe magnetic interactions in zincochromite, a mineral whose crystal structure consists of tetrahedral building blocks with four triangular faces. Beams of neutrons can serve as a high-power magnetic microscope that reveals the geometric arrangement of spins in a solid and how this arrangement evolves as temperature changes. Patterns of neutrons that scattered after they were beamed at zincochromite samples revealed orderly groupings of spins.

The researchers determined that, at low temperatures, the spins organize into six-sided, or hexagonal, structures that repeat throughout the material. Six neighboring tetrahedra contribute one side each to the hexagon. In turn, six spins, one at each corner, are arranged so that each one is antiparallel to its two nearest neighbors—a highly stable organization.

The patterns of scattered neutrons also suggest that the six hexagon spins act in concert, bunching all spins into one and creating what Lee and his colleagues call a "spin director." Each hexagon achieves local magnetic order and its spin director is largely confined, interacting only weakly with the spin directors of neighboring hexagons.


As a result, the researchers say, geometrically frustrated magnets are not, as suspected, a system of strongly interacting spins, but rather a "protectorate of weakly interacting" composite spins.

In addition to Lee, collaborators include Collin Broholm of Johns Hopkins University and the NCNR; William Ratcliff of Rutgers University; Goran Gasparovic of Johns Hopkins; Qing Zhen Huang of the NCNR; Tae Hee Kim of Rutgers; and Sang-Wook Cheong of Rutgers.

As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST develops and promotes measurements, standards, and technology to enhance productivity, facilitate trade and improve the quality of life.

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Physics and Astronomy:

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>