Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Say ’Frustrated Magnets’ Hint at Broader Organizing Principle in Nature

27.08.2002


When "frustrated" by their arrangement, magnetic atoms surrender their individuality, stop competing with their neighbors and then practice a group version of spin control—acting collectively to achieve local magnetic order—according to scientists from the Commerce Department’s National Institute of Standards and Technology, Johns Hopkins University and Rutgers University writing in the Aug. 22, 2002, issue of the journal Nature.


Chill! Atoms in zincochromite, a "geometrically frustrated magnet," resolve their frustration through group spin control. Neighboring tetraheda (solids with four triangular faces) contribute a side each to create hexagonal (six-sided) spin clusters. A hexagon bunches the spins of magnetic atoms-one at each corner-into a single "spin director" (arrows). The composite behavior achieves local magnetic order.



The unexpected composite behavior detected in experiments done at the NIST Center for Neutron Research (NCNR) accounts for the range of surprising—and, heretofore, unexplainable—properties of so-called geometrically frustrated magnets, the subject of intensifying research efforts that may lead to new types of matter. The finding also may shed light on natural clustering processes including the assembly of quarks and other minuscule components into atoms, the folding of proteins and the clumping of stars in galaxies, the scientists say.

These and other important phenomena—including high-temperature superconductivity—suggest that there are "higher-order organizing principles that are intrinsic to nature," explains lead author Seung-Hun Lee, NCNR staff physicist.


The team discovered that self-organized "spin clusters" emerge out of competing interactions in a geometrically frustrated magnet. Though involving interactions on a very tiny scale—measured in nanometers (billionths of a meter)—the team says its discovery may provide a new model for exploring "emergent structure in complex interacting systems" on different levels. They singled out research on protein folding as a potential beneficiary. In protein folding, cells assemble units called amino acids into complex three-dimensional shapes that dictate the function of the resulting protein.

Lee and colleagues set out to determine how atoms arrayed in the lattice—like geometry of frustrated magnets resolve an apparent predicament: how to align their spins-the sources of magnetism—when faced with a bewildering number of options.

As a conventional magnet cools, atoms pair up with their neighbors and line up their spins, so that they spin in parallel or in opposition (antiparallel). At a temperature unique to the type of material, the magnet undergoes a phase transition, at which a highly symmetrical, long-range ordering of spins is achieved. The material and each spin are said to be in their ground state, a condition of equilibrium, or ultimate stability.

For illustration, this spin-ordering is accomplished easily in materials with squares as a structural building block. An atom can spin antiparallel to the spins of the atoms in the two adjacent corners.

This is not the case for a geometrically frustrated magnet, which is assembled from triangular units. If atoms at two corners spin antiparallel, the atom in the third is left with a no-win situation. Whichever orientation it chooses, the third atom will be out of sync with one of its two neighbors. As a result, the entire system is "geometrically frustrated" and all spins can fluctuate among a range of potential ground states. Long-range order is not attainable, raising the question as to how spins organize locally to cope with a seemingly confusing array of alignment options.

At the NCNR, researchers used neutrons, which are sensitive to magnetic spins, to probe magnetic interactions in zincochromite, a mineral whose crystal structure consists of tetrahedral building blocks with four triangular faces. Beams of neutrons can serve as a high-power magnetic microscope that reveals the geometric arrangement of spins in a solid and how this arrangement evolves as temperature changes. Patterns of neutrons that scattered after they were beamed at zincochromite samples revealed orderly groupings of spins.

The researchers determined that, at low temperatures, the spins organize into six-sided, or hexagonal, structures that repeat throughout the material. Six neighboring tetrahedra contribute one side each to the hexagon. In turn, six spins, one at each corner, are arranged so that each one is antiparallel to its two nearest neighbors—a highly stable organization.

The patterns of scattered neutrons also suggest that the six hexagon spins act in concert, bunching all spins into one and creating what Lee and his colleagues call a "spin director." Each hexagon achieves local magnetic order and its spin director is largely confined, interacting only weakly with the spin directors of neighboring hexagons.


As a result, the researchers say, geometrically frustrated magnets are not, as suspected, a system of strongly interacting spins, but rather a "protectorate of weakly interacting" composite spins.

In addition to Lee, collaborators include Collin Broholm of Johns Hopkins University and the NCNR; William Ratcliff of Rutgers University; Goran Gasparovic of Johns Hopkins; Qing Zhen Huang of the NCNR; Tae Hee Kim of Rutgers; and Sang-Wook Cheong of Rutgers.

As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST develops and promotes measurements, standards, and technology to enhance productivity, facilitate trade and improve the quality of life.

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>