Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful electron beam generator could combat anthrax

02.08.2002


A physics professor’s invention to decontaminate industrial wastewater could become a powerful new weapon against anthrax.



Peter McIntyre and a group of colleagues at Texas A&M University have developed a cost-effective device to produce high energy electron beams that can break down harmful organic molecules in water - and destroy bacteria such as anthrax in food - or even on mail.

"William Cooper at the University of North Carolina showed that high-powered beams of electrons are highly effective in destroying organic contaminants in water," McIntyre said. "The difference here is that we’ve upped the power produced and reduced the cost, producing four times more energy at a unit cost per kilowatt five times less than any other such instrument."


Over the past three years, McIntyre’s team has developed the Coupled Multiplier Accelerator (CMA), a completely self-contained high-power electron accelerator that produces 100 kilowatts of beam power at one million volts, supports multiple independent beams and has a total capital cost of less than $500,000, representing a new, more affordable generation of e-beam technology.

Basically, McIntyre’s machine produces an electron beam like that found in CRT’s. The beam raster scans the contaminated water like cathode rays scan the inside of a TV tube, ionizing the water to produce free radicals and inducing both oxidation and reduction reactions which "digest" organic contaminants.

"The same process causes double breaks in bacterial DNA bonds, killing them," McIntyre explained. "It could be used to kill anthrax spores, which are five times more difficult to kill than bacteria like e-coli, because the spores encase the anthrax in a hard protective shell."

McIntyre expects the first commercial CMA to be in place at a Houston-area petrochemical plant by December. The technology has been licensed to a small Texas company which will operate the system there, where it will be used to treat a condensate stream containing methyl terbutyl ether (MTBE), a gasoline additive. MTBE is harmful to humans, and some of its secondary breakdown products, like formaldehyde and acetone, are even more toxic.

"The CMA is key to making lots of e-beam, supporting multiple beams needed for effective treatment in most real-world applications and doing it with a simple, reliable system that is economical for industrial applications," McIntyre said. "The basis of the technology is in every automobile - the alternator."

McIntyre’s CMA uses two 125 hp electronic motors to drive 16 alternators. Each alternator outputs a three-phase alternating current that is boosted by a transformer and rectified by a voltage multiplier circuit to produce high-voltage direct current. The 16 modules are connected in series to produce up to two megavolts of beam energy with up to 200 kilowatts of power. The entire accelerator - voltage source, electron guns and accelerator columns - is housed in a 14-foot-long, 9-foot-diameter pressurized steel vessel.

McIntyre’s CMA project team includes Texas A&M professors Akhdior Sattarov (physics), Bill Batchelor (civil engineering) and Bruce Herbert (geophysics) and Charles Meitzler of Sam Houston State University, as well as six graduate students, four undergrads and four professional technicians.

"You might say that man is the easiest organism to kill, but anthrax is one of the hardest," McIntyre observed. "We hope the CMA can equalize the odds a bit."


Contact: Judith White, 979-845-4664, jw@univrel.tamu.edu;
Peter McIntyre, p-mcintyre@tamu.edu


Judith White | EurekAlert!
Further information:
http://www.tamu.edu/

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>