Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful electron beam generator could combat anthrax

02.08.2002


A physics professor’s invention to decontaminate industrial wastewater could become a powerful new weapon against anthrax.



Peter McIntyre and a group of colleagues at Texas A&M University have developed a cost-effective device to produce high energy electron beams that can break down harmful organic molecules in water - and destroy bacteria such as anthrax in food - or even on mail.

"William Cooper at the University of North Carolina showed that high-powered beams of electrons are highly effective in destroying organic contaminants in water," McIntyre said. "The difference here is that we’ve upped the power produced and reduced the cost, producing four times more energy at a unit cost per kilowatt five times less than any other such instrument."


Over the past three years, McIntyre’s team has developed the Coupled Multiplier Accelerator (CMA), a completely self-contained high-power electron accelerator that produces 100 kilowatts of beam power at one million volts, supports multiple independent beams and has a total capital cost of less than $500,000, representing a new, more affordable generation of e-beam technology.

Basically, McIntyre’s machine produces an electron beam like that found in CRT’s. The beam raster scans the contaminated water like cathode rays scan the inside of a TV tube, ionizing the water to produce free radicals and inducing both oxidation and reduction reactions which "digest" organic contaminants.

"The same process causes double breaks in bacterial DNA bonds, killing them," McIntyre explained. "It could be used to kill anthrax spores, which are five times more difficult to kill than bacteria like e-coli, because the spores encase the anthrax in a hard protective shell."

McIntyre expects the first commercial CMA to be in place at a Houston-area petrochemical plant by December. The technology has been licensed to a small Texas company which will operate the system there, where it will be used to treat a condensate stream containing methyl terbutyl ether (MTBE), a gasoline additive. MTBE is harmful to humans, and some of its secondary breakdown products, like formaldehyde and acetone, are even more toxic.

"The CMA is key to making lots of e-beam, supporting multiple beams needed for effective treatment in most real-world applications and doing it with a simple, reliable system that is economical for industrial applications," McIntyre said. "The basis of the technology is in every automobile - the alternator."

McIntyre’s CMA uses two 125 hp electronic motors to drive 16 alternators. Each alternator outputs a three-phase alternating current that is boosted by a transformer and rectified by a voltage multiplier circuit to produce high-voltage direct current. The 16 modules are connected in series to produce up to two megavolts of beam energy with up to 200 kilowatts of power. The entire accelerator - voltage source, electron guns and accelerator columns - is housed in a 14-foot-long, 9-foot-diameter pressurized steel vessel.

McIntyre’s CMA project team includes Texas A&M professors Akhdior Sattarov (physics), Bill Batchelor (civil engineering) and Bruce Herbert (geophysics) and Charles Meitzler of Sam Houston State University, as well as six graduate students, four undergrads and four professional technicians.

"You might say that man is the easiest organism to kill, but anthrax is one of the hardest," McIntyre observed. "We hope the CMA can equalize the odds a bit."


Contact: Judith White, 979-845-4664, jw@univrel.tamu.edu;
Peter McIntyre, p-mcintyre@tamu.edu


Judith White | EurekAlert!
Further information:
http://www.tamu.edu/

More articles from Physics and Astronomy:

nachricht Scientists propose synestia, a new type of planetary object
23.05.2017 | University of California - Davis

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>