Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful electron beam generator could combat anthrax

02.08.2002


A physics professor’s invention to decontaminate industrial wastewater could become a powerful new weapon against anthrax.



Peter McIntyre and a group of colleagues at Texas A&M University have developed a cost-effective device to produce high energy electron beams that can break down harmful organic molecules in water - and destroy bacteria such as anthrax in food - or even on mail.

"William Cooper at the University of North Carolina showed that high-powered beams of electrons are highly effective in destroying organic contaminants in water," McIntyre said. "The difference here is that we’ve upped the power produced and reduced the cost, producing four times more energy at a unit cost per kilowatt five times less than any other such instrument."


Over the past three years, McIntyre’s team has developed the Coupled Multiplier Accelerator (CMA), a completely self-contained high-power electron accelerator that produces 100 kilowatts of beam power at one million volts, supports multiple independent beams and has a total capital cost of less than $500,000, representing a new, more affordable generation of e-beam technology.

Basically, McIntyre’s machine produces an electron beam like that found in CRT’s. The beam raster scans the contaminated water like cathode rays scan the inside of a TV tube, ionizing the water to produce free radicals and inducing both oxidation and reduction reactions which "digest" organic contaminants.

"The same process causes double breaks in bacterial DNA bonds, killing them," McIntyre explained. "It could be used to kill anthrax spores, which are five times more difficult to kill than bacteria like e-coli, because the spores encase the anthrax in a hard protective shell."

McIntyre expects the first commercial CMA to be in place at a Houston-area petrochemical plant by December. The technology has been licensed to a small Texas company which will operate the system there, where it will be used to treat a condensate stream containing methyl terbutyl ether (MTBE), a gasoline additive. MTBE is harmful to humans, and some of its secondary breakdown products, like formaldehyde and acetone, are even more toxic.

"The CMA is key to making lots of e-beam, supporting multiple beams needed for effective treatment in most real-world applications and doing it with a simple, reliable system that is economical for industrial applications," McIntyre said. "The basis of the technology is in every automobile - the alternator."

McIntyre’s CMA uses two 125 hp electronic motors to drive 16 alternators. Each alternator outputs a three-phase alternating current that is boosted by a transformer and rectified by a voltage multiplier circuit to produce high-voltage direct current. The 16 modules are connected in series to produce up to two megavolts of beam energy with up to 200 kilowatts of power. The entire accelerator - voltage source, electron guns and accelerator columns - is housed in a 14-foot-long, 9-foot-diameter pressurized steel vessel.

McIntyre’s CMA project team includes Texas A&M professors Akhdior Sattarov (physics), Bill Batchelor (civil engineering) and Bruce Herbert (geophysics) and Charles Meitzler of Sam Houston State University, as well as six graduate students, four undergrads and four professional technicians.

"You might say that man is the easiest organism to kill, but anthrax is one of the hardest," McIntyre observed. "We hope the CMA can equalize the odds a bit."


Contact: Judith White, 979-845-4664, jw@univrel.tamu.edu;
Peter McIntyre, p-mcintyre@tamu.edu


Judith White | EurekAlert!
Further information:
http://www.tamu.edu/

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>