Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

China becomes a physics powerhouse

01.08.2008
Judged by the astonishing increase in journal papers written by scientists in China, there can be little doubt that China is finding its place as one of the world’s scientific power houses.

Michael Banks, Physics World’s News Editor, quantifies this surge in scientific output from China and asks whether quality matches quantity in August’s Physics World.

Nanoscience, quantum computing and high-temperature superconductivity are three of the cutting-edge areas of physics that have seen particularly large increases. Published journal articles in nanoscience, for example, with at least one co-author based in China, have seen a 10-fold increase since the beginning of the millennium, rising to more than 10,500 in 2007.

China has already overtaken the UK and Germany in the number of physics papers published and is beginning to nip at the heels of the United States. If China’s output continues to increase at its current pace, the country will be publishing more articles in physics - and indeed all of science - than the US by 2012.

Quantity alone however is not enough. The number of times a journal paper is cited by other academics in their own journal papers is often used as a guide to journal papers’ quality. Unfortunately for China, they are currently a long way from the national citation top spot, ranked in 65th for physics, just ahead of Kuwait, with an average of 4.12 citations for each of the papers published.

As China has only just started to publish large volumes of work, it is not a fair reflection. Werner Marx, an information scientist from the Max Planck Institute for Solid State Research in Stuttgart, Germany, who carried out a bibliometric study for the Physics World article, said, “The figure is still quite impressive, and I estimate this will rise substantially in the next few years.”

All indications suggest that China’s propensity for world-leading research is growing. In March this year scientists in Japan first reported a new class of iron-based superconducting material that can conduct electricity without resistance when cooled to below 26 Kelvin (K). Researchers in China quickly picked up the baton and, within a month of the initial Japanese discovery, had boosted the transition temperature at which the material loses all its electrical resistance to 52 K.

Werner Marx said, “China has become a notable factor in the scientific landscape. Usually scientific development in nations does not show such a strong acceleration as we have seen in China, so it will be interesting to see how it responds and develops in the future.”

Also in this issue:

•Airbrushed from history? The 1978 Nobel Prize was awarded to Peter Kapitza for discovering that liquid helium can be a superfluid, but records reveal that two Cambridge researchers - Jack Allen and Donald Misener - made the same discovery at the same time too.

•Claims by researchers in Italy to have detected dark-matter particles - by watching the flashes of light the particles give off when they slam into an underground detector made from sodium iodide - have been controversial for over 10 years. But are they right?

Joseph Winters | alfa
Further information:
http://www.iop.org
http://www.physicsworld.com

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>