Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Phoenix Mars Lander To Begin Rasping Frozen Layer

16.07.2008
A powered rasp on the back of the robotic arm scoop of NASA's Phoenix Mars Lander is being tested for the first time on Mars in gathering sample shavings of ice.

The lander has used its arm in recent days to clear away loose soil from a subsurface layer of hard-frozen material and create a large enough area to use the motorized rasp in a trench informally named "Snow White."

The Phoenix team prepared commands early Tuesday for beginning a series of tests with the rasp later in the day. Engineers and scientists designed the tests to lead up to, in coming days, delivering a sample of icy soil into one of the lander's laboratory ovens.

"While Phoenix was in development, we added the rasp to the robotic arm design specifically to grind into very hard surface ice," said Barry Goldstein, Phoenix project manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

"This is the exactly the situation we find we are facing on Mars, so we believe we have the right tool for the job. Honeybee Robotics in New York City did a heroic job of designing and delivering the rasp on a very short schedule."

The rasp bit extends at a shallow angle out of an opening on the back of the scoop at the end of the 2.35-meter-long (7.7-foot-long) robotic arm. To use it, the back surface of the scoop is placed on the ground, and a motor rotates the rasp. The angle of the rasp is increased from nearly horizontal to slightly steeper while it is rotating, so the tool kicks shavings sideways onto a collection surface just inside the opening. After the rasp stops, a series of moves by the scoop then shifts the collected shavings from the back of the scoop, past baffles, to the front of the scoop. The baffles serve to keep material from falling out of the rasp opening when the scoop is used as a front loader.

The commands prepared for Phoenix's activities Tuesday called for rasping into the hard material at the bottom of the Snow White trench at two points about one centimeter (0.4 inch) apart. The lander's Surface Stereo Imager and robotic arm camera will be used to check the process at several steps and to monitor any resulting sample in the scoop for several hours after it is collected.

Collecting an icy sample for an oven of Phoenix's Thermal and Evolved-Gas Analyzer (TEGA) may involve gathering shavings collected at the rasp opening and scooping up additional shavings produced by the rasp. The Phoenix team has been testing this combination on simulated Martian ice with a near-replica model of Phoenix in a test facility at the University of Arizona, Tucson.

The Phoenix mission is led by Peter Smith of the University of Arizona with project management at JPL and development partnership at Lockheed Martin, Denver. International contributions come from the Canadian Space Agency; the University of Neuchatel; the universities of Copenhagen and Aarhus, Denmark; Max Planck Institute, Germany; and the Finnish Meteorological Institute. For more about Phoenix, visit: http://www.nasa.gov/phoenix and http://phoenix.lpl.arizona.edu.

MEDIA CONTACTS:

Guy Webster 818-354-6278
Jet Propulsion Laboratory, Pasadena, Calif.
guy.webster@jpl.nasa.gov
Dwayne Brown 202-358-1726
NASA Headquarters, Washington
dwayne.c.brown@nasa.gov
Sara Hammond 520-626-1974
University of Arizona, Tucson
shammond@lpl.arizona.edu

Lori Stiles | University of Arizona
Further information:
http://phoenix.lpl.arizona.edu
http://www.nasa.gov/phoenix

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>