Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some fundamental interactions of matter turn out to be fundamentally different than thought, say Stanford researchers

07.07.2008
Collisions have consequences. Everyone knows that. Whether it's between trains, planes, automobiles or atoms, there are always repercussions. But while macroscale collisions may have the most obvious effects—mangled steel, bruised flesh—sometimes it is the tiniest collisions that have the most resounding repercussions.

Such may be the case with the results of new experimental research on collisions between a single hydrogen atom and a lone molecule of deuterium—the smallest atom and one of the smallest molecules, respectively—conducted by a team led by Richard Zare, a professor of chemistry at Stanford University.

When an atom collides with a molecule, traditional wisdom said the atom had to strike one end of the molecule hard to deliver energy to it. People thought a glancing blow from an atom would be useless in terms of energy transfer, but that turns out not to be the case, according to the researchers.

"We have a new understanding of how energy can be transferred in collisions at the molecular scale," said Zare, senior author of a paper presenting the results in the July 3 issue of Nature.

Every atom or molecule, even if it has no charge, has electrostatic forces around it—sort of like the magnetic field of the Earth. Those chemical forces exert a pull on any other atom or molecule within range, trying to form a chemical bond.

What Zare and his team found is that a speeding hydrogen atom does not have to score a direct hit on a deuterium molecule, a form of molecular hydrogen made up of two heavy isotopes of hydrogen, to set the molecule vibrating. It only needs to pass closely enough to exert its tiny chemical force on the molecule. Vibrating molecules matter because they are more energized, making them more reactive. Thus, energy transfer effectively softens them up for future reactions.

"This has changed a very simple idea that we cherished—that to make a molecule highly vibrationally excited, you basically had to crush it, squeeze it, hit it over the head. Compress some bond and the molecule would snap back," Zare said. "We found quite the opposite."

One could compare it to the difference between a punch in the stomach and a caress on the cheek. Both can set the senses tingling, but in very different fashions.

Zare's team discovered that as a hydrogen atom passed close to a deuterium molecule, the chemical forces tugged on the nearest of the deuterium atoms in the molecule, pulling it away from the other deuterium atom. But if the tug was not strong enough to break the two deuterium atoms apart, as the hydrogen atom moved farther away its hold on the deuterium atom would weaken. The deuterium atom would eventually slip from its grip and snap back toward the other deuterium atom, initiating an oscillation, or vibration.

"What we are really seeing is the result of a frustrated chemical reaction," Zare said. "The molecule wants to react. It just didn't get into the right position with the right conditions so that it could react."

Zare went on to picture this process as follows: "The deuterium molecule is in a happily married state until the hydrogen atom flies by and attracts the nearest deuterium atom. This deuterium atom in the middle is in a giant tug of war. It is being fought over by two lovers, two highly similar atoms that are both attracted to the middle deuterium atom. This affair is a love triangle. In energy transfer, the original spouse wins out. The middle deuterium atom decides not to stray and rebounds to the other deuterium atom—its first love—setting both to vibrate rapidly."

The new findings may have ramifications for understanding what happens in any chemical reaction, in addition to interactions between chemicals that do not result in a reaction but instead result in energy transfer. So far, one instance has been discovered, but Zare believes that this behavior is likely to be found in many other collision systems.

"This is very fundamental stuff as to what happens in transformations of matter from one state to another," Zare said. "It's very fundamental chemistry."

Comparing the ramifications of the new findings to a ripple spreading out from a pebble dropped into a pond, Zare said, "Maybe this will be the sound of one hand clapping, if the ripple doesn't go anywhere. Taken together, the only way we advance is making these ripples and following them as they spread outward."

Zare's group did the experiments that revealed the energy transfer occurring during "soft" collisions between the hydrogen atom and the deuterium molecule by using techniques and equipment for measuring the molecular interactions that had previously been developed in his laboratory. The experimental work is a major portion of the doctoral thesis of his graduate student Noah T. Goldberg, who was assisted in these measurements by Jianyang Zhang, a postdoctoral researcher, and graduate student Daniel J. Miller. The theoretical calculations that provided the model used to explain the observations is the result of work done by co-authors Stuart Greaves of the University of Bristol and Eckart Wrede of the University of Durham, both in Britain.

The research done at Stanford was funded by the National Science Foundation. The research done in Britain was funded by the Engineering and Physical Sciences Research Council.

Louis Bergeron | Stanford University
Further information:
http://www.stanford.edu

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>