Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some fundamental interactions of matter turn out to be fundamentally different than thought, say Stanford researchers

07.07.2008
Collisions have consequences. Everyone knows that. Whether it's between trains, planes, automobiles or atoms, there are always repercussions. But while macroscale collisions may have the most obvious effects—mangled steel, bruised flesh—sometimes it is the tiniest collisions that have the most resounding repercussions.

Such may be the case with the results of new experimental research on collisions between a single hydrogen atom and a lone molecule of deuterium—the smallest atom and one of the smallest molecules, respectively—conducted by a team led by Richard Zare, a professor of chemistry at Stanford University.

When an atom collides with a molecule, traditional wisdom said the atom had to strike one end of the molecule hard to deliver energy to it. People thought a glancing blow from an atom would be useless in terms of energy transfer, but that turns out not to be the case, according to the researchers.

"We have a new understanding of how energy can be transferred in collisions at the molecular scale," said Zare, senior author of a paper presenting the results in the July 3 issue of Nature.

Every atom or molecule, even if it has no charge, has electrostatic forces around it—sort of like the magnetic field of the Earth. Those chemical forces exert a pull on any other atom or molecule within range, trying to form a chemical bond.

What Zare and his team found is that a speeding hydrogen atom does not have to score a direct hit on a deuterium molecule, a form of molecular hydrogen made up of two heavy isotopes of hydrogen, to set the molecule vibrating. It only needs to pass closely enough to exert its tiny chemical force on the molecule. Vibrating molecules matter because they are more energized, making them more reactive. Thus, energy transfer effectively softens them up for future reactions.

"This has changed a very simple idea that we cherished—that to make a molecule highly vibrationally excited, you basically had to crush it, squeeze it, hit it over the head. Compress some bond and the molecule would snap back," Zare said. "We found quite the opposite."

One could compare it to the difference between a punch in the stomach and a caress on the cheek. Both can set the senses tingling, but in very different fashions.

Zare's team discovered that as a hydrogen atom passed close to a deuterium molecule, the chemical forces tugged on the nearest of the deuterium atoms in the molecule, pulling it away from the other deuterium atom. But if the tug was not strong enough to break the two deuterium atoms apart, as the hydrogen atom moved farther away its hold on the deuterium atom would weaken. The deuterium atom would eventually slip from its grip and snap back toward the other deuterium atom, initiating an oscillation, or vibration.

"What we are really seeing is the result of a frustrated chemical reaction," Zare said. "The molecule wants to react. It just didn't get into the right position with the right conditions so that it could react."

Zare went on to picture this process as follows: "The deuterium molecule is in a happily married state until the hydrogen atom flies by and attracts the nearest deuterium atom. This deuterium atom in the middle is in a giant tug of war. It is being fought over by two lovers, two highly similar atoms that are both attracted to the middle deuterium atom. This affair is a love triangle. In energy transfer, the original spouse wins out. The middle deuterium atom decides not to stray and rebounds to the other deuterium atom—its first love—setting both to vibrate rapidly."

The new findings may have ramifications for understanding what happens in any chemical reaction, in addition to interactions between chemicals that do not result in a reaction but instead result in energy transfer. So far, one instance has been discovered, but Zare believes that this behavior is likely to be found in many other collision systems.

"This is very fundamental stuff as to what happens in transformations of matter from one state to another," Zare said. "It's very fundamental chemistry."

Comparing the ramifications of the new findings to a ripple spreading out from a pebble dropped into a pond, Zare said, "Maybe this will be the sound of one hand clapping, if the ripple doesn't go anywhere. Taken together, the only way we advance is making these ripples and following them as they spread outward."

Zare's group did the experiments that revealed the energy transfer occurring during "soft" collisions between the hydrogen atom and the deuterium molecule by using techniques and equipment for measuring the molecular interactions that had previously been developed in his laboratory. The experimental work is a major portion of the doctoral thesis of his graduate student Noah T. Goldberg, who was assisted in these measurements by Jianyang Zhang, a postdoctoral researcher, and graduate student Daniel J. Miller. The theoretical calculations that provided the model used to explain the observations is the result of work done by co-authors Stuart Greaves of the University of Bristol and Eckart Wrede of the University of Durham, both in Britain.

The research done at Stanford was funded by the National Science Foundation. The research done in Britain was funded by the Engineering and Physical Sciences Research Council.

Louis Bergeron | Stanford University
Further information:
http://www.stanford.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>