Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technology May Help Olympic Sailing: Doppler Lidar More Accurately Shows Which Way the Wind Blows

02.07.2008
A team of researchers at the Ocean University of China has developed and tested a mobile lidar (light detection and ranging) station that can accurately measure wind speed and direction over large areas in real time -- an application useful for aviation safety, weather forecasting and sports.

As described in the July 1 issue of the journal Optics Letters, published by the Optical Society, the mobile lidar station can measure wind fields more accurately, which could help world-class athletes compete in international competitions, such as the Olympics. Ocean University is in Qingdao, which is hosting the sailing competitions of the XXIX Olympic Games and the Beijing 2008 Paralympic Games, and this technique is being tested in conjunction with the event.

"Wind is non-uniform even in a small sailing field," says Professor Zhi-Shen Liu of the Key Laboratory of Ocean Remote Sensing, Ministry of Education of China, Ocean University of China, who led the research. "Athletes could maximize their performances if they have the most accurate information to help them capture the wind."

In Olympic sailing, individual competitors or teams of athletes sail various classes of sailboats in timed trials over a single course. The contest requires them to navigate upwind, downwind and everything in between. Their final time depends on numerous factors, including the boat design, the skill of the sailors, course difficulty and ocean currents. Perhaps the most important factor, though, is how well the athletes can harness the wind that fills their sails.

Because wind constantly changes speed and direction, athletes and coaches hope to have the best information at the start of a run. On cloudy, rainy days, the standard meteorological tool of Doppler radar can accurately provide wind field information. When no clouds are present, however, Doppler radar is ineffective. The best wind data on clear days comes from ocean buoys and land stations that use wind cups and ultrasonic anemometers to measure wind speed.

In the Qingdao sailing area, where this summer's competitions will take place, only four buoys, one boat and one tower are available to measure sea surface winds within a competition area of approximately 10 square kilometers.

Liu and his lidar group, composed of research scientists and graduate students, have been working with an optical remote sensing technology called Doppler lidar, which they are applying for weather and environmental research. Lidar works by scattering laser beams off atmospheric aerosols or molecules. Doppler lidar takes advantage of the fact that when these aerosols or molecules are moving in the wind, the scattered laser light changes frequency -- the same way an approaching car has a higher pitched sound than a car driving away.

The advantage of Doppler lidar, says Liu, is that it can quickly sample a large area, providing a much finer map of winds than buoys alone. He and his group have developed a lidar bus, which can move equipment to the experiment field conveniently.

Last year, they successfully tested their new bus at the 2007 Qingdao International Regatta sailing event. They moved the bus to the seashore near the sailing field, and made a horizontal scan over the sea surface, making the measurement in real time and then uploading the data to the local meteorological station every 10 minutes. They envision a similar effort in the upcoming Olympic and Paralympic games.

The research was funded by the National Natural Science Foundation of China, the Key Laboratory of Ocean Remote Sensing, the Ministry of Education of China and the China Meteorological Administration (CMA).

Paper: "A high spatial and temporal resolution mobile incoherent Doppler lidar for sea surface wind measurements" by Zhi-Shen Liu et al., Optics Letters, Vol. 33, No. 13, July 1, 2008 p. 1485-1487. For a copy of the paper, please contact Angela Stark, astark@osa.org or 202.416.1443.

About OSA
Uniting more than 70,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics.

Angela Stark | newswise
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>