Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble’s sweeping view of the Coma Galaxy Cluster

11.06.2008
Hubble’s Advanced Camera for Surveys has observed a large portion of the Coma Cluster, stretching across several million light-years. The entire cluster is more than 20 million light-years in diameter, is nearly spherical in shape and contains thousands of galaxies.

Also known as Abell 1656, the Coma Cluster is over 300 million light-years away. The cluster, named after its parent constellation Coma Berenices, is near the Milky Way’s north pole. This places the Coma Cluster in an area that is not obscured by dust and gas from the plane of the Milky Way, and so is easily visible to observers here on Earth.


Hubble’s Advanced Camera for Surveys has viewed a large portion of the Coma Cluster, stretching across several million light-years across. The entire spherical cluster is more than 20 million light-years in diameter and contains thousands of galaxies. Most of the galaxies that inhabit the central portion of the Coma Cluster are elliptical galaxies. These featureless “fuzz-balls” are a pale golden brown in colour and contain populations of old stars. Both dwarf and giant ellipticals are found in abundance in the Coma Cluster.

Most of the galaxies that inhabit the central portion of the Coma Cluster are elliptical galaxies. These apparently featureless “fuzz-balls” are a pale golden brown in colour and contain populations of old stars. Both dwarf and giant ellipticals are found in abundance in the Coma Cluster.

Farther out from the centre of the cluster there are several spiral galaxies. These galaxies contain clouds of cold gas that are giving birth to new stars. Spiral arms and dust lanes “accessorise” these bright bluish-white galaxies, which have a distinctive disc structure.

S0 (S-zero) galaxies form a morphological class of objects between the better known elliptical and spiral galaxies. They consist of older stars and show little evidence of recent star formation, but they do show some structure — perhaps a bar or a ring that may eventually give rise to more disc-like features.

This Hubble image consists of a section of the cluster that is roughly one-third of the way out from the centre of the whole cluster. One bright spiral galaxy is visible in the upper left of the image. It is distinctly brighter and bluer than the galaxies surrounding it. A series of dusty spiral arms appears reddish brown against the whiter disc of the galaxy, and suggests that this galaxy has been disturbed at some point in the past. The other galaxies in the image are either ellipticals, S0 galaxies or background galaxies that are far beyond the Coma Cluster sphere.

The data for the Coma Cluster were taken as part of a survey of a nearby rich galaxy cluster. Collectively they will provide a key database for studies of galaxy formation and evolution. This survey will also help to compare galaxies in different environments, both crowded and isolated, as well as to compare relatively nearby galaxies with more distant ones (at higher redshifts).

Lars Christensen | alfa
Further information:
http://www.spacetelescope.org/news/html/heic0813.html

More articles from Physics and Astronomy:

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

nachricht Home computers discover a record-breaking pulsar-neutron star system
08.12.2016 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>