Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human Mobility is Not Random

06.06.2008
In the cover story in this week’s Nature magazine, Northeastern University physicist Professor Albert-László Barabási and his team found that humans can be characterized based on how they move. In the article, titled “Understanding Individual Human Mobility Patterns,” the authors discuss how, for the first time, they were able to follow individuals in real-time and discovered that despite the diversity of their travel history, humans follow simple reproducible patterns.

In a groundbreaking paper published as a cover story in this week’s Nature magazine, Northeastern University physicist Professor Albert-László Barabási and his team found that humans can be characterized based on how they move.

In the article, titled “Understanding Individual Human Mobility Patterns,” the authors discuss how, for the first time, they were able to follow individuals in real-time and discovered that despite the diversity of their travel history, humans follow simple reproducible patterns.

Barabási, along with co-authors Marta C. González and César A. Hidalgo, studied the trajectory of 100,000 anonymized cell phone users – randomly selected from more than 6 million users – and tracked them for a six-month period. They found that contrary to what the prevailing Lévy flight and random walk models suggest, human trajectories show that while most individuals travel only short distances and a few regularly move over hundreds of miles, they all follow a simple pattern regardless of time and distance, and they have a strong tendency to return to locations they visited before.

“We found that human trajectories show a high degree of temporal and spatial regularity, each individual being characterized by a time-independent characteristic travel distance and a significant probability to return to a few highly frequented locations, like home and work” said Albert-László Barabási, Distinguished Professor of Physics and Director of the Center for Complex Network Research (CCNR) at Northeastern University.

“Our study shows that humans, after only three months of saturated behavior, reach stability in their mobility patterns, and the trajectories become identical,” added Marta C. González, Ph.D. in Physics and Research Assistant at the CCNR. “People devote their time to a few locations, although spending their remaining time in five to 50 places, visited with diminished regularity.”

The location of cell phone users was located every time they received or initiated a call or a text message, allowing Barabási and his team to reconstruct the user’s time-resolved trajectory. In order to make sure that the findings were not affected by an irregular call pattern, the researchers also studied the data set that captured the location of 206 cell phone users, recorded every two hours for an entire week. The two data sets showed similar results, the second validating the first.

The findings of this research complement the notion that human mobility can be generalized by the Lévy flight statistics, as suggested by a 2006 study that found that bank note dispersal is a proxy for human movement. That study analyzed the dispersal of about half-a-million dollar bills in the U.S. and concluded that human travel on geographical scales is an ambivalent and effectively superdiffusive process. By using a different methodology, Barabási’s group was able to find evidence to complement those findings.

“Contrary to bank notes, mobile phones are carried by the same individual during his/her daily routine, offering the best proxy to capture individual human trajectories, said César A. Hidalgo, Ph.D. and Research Assistant at the CCNR. “Also, unlike dollar bills that always follow the trajectory of the current owner and diffuse, humans display significant regularity and do not diffuse.”

“The inherent similarity in travel patterns of individuals could impact all phenomena driven by human mobility, from epidemic prevention to emergency response, urban planning, traffic forecasting and agent-based modeling,” added Barabási.

About Northeastern

Founded in 1898, Northeastern University is a private research university located in the heart of Boston. Northeastern is a leader in interdisciplinary research, urban engagement, and the integration of classroom learning with real-world experience. The university's distinctive cooperative education program, where students alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, is one of the largest and most innovative in the world. The University offers a comprehensive range of undergraduate and graduate programs leading to degrees through the doctorate in six undergraduate colleges, eight graduate schools, and two part-time divisions.

Renata Nyul | newswise
Further information:
http://www.northeastern.edu

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>