Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human Mobility is Not Random

06.06.2008
In the cover story in this week’s Nature magazine, Northeastern University physicist Professor Albert-László Barabási and his team found that humans can be characterized based on how they move. In the article, titled “Understanding Individual Human Mobility Patterns,” the authors discuss how, for the first time, they were able to follow individuals in real-time and discovered that despite the diversity of their travel history, humans follow simple reproducible patterns.

In a groundbreaking paper published as a cover story in this week’s Nature magazine, Northeastern University physicist Professor Albert-László Barabási and his team found that humans can be characterized based on how they move.

In the article, titled “Understanding Individual Human Mobility Patterns,” the authors discuss how, for the first time, they were able to follow individuals in real-time and discovered that despite the diversity of their travel history, humans follow simple reproducible patterns.

Barabási, along with co-authors Marta C. González and César A. Hidalgo, studied the trajectory of 100,000 anonymized cell phone users – randomly selected from more than 6 million users – and tracked them for a six-month period. They found that contrary to what the prevailing Lévy flight and random walk models suggest, human trajectories show that while most individuals travel only short distances and a few regularly move over hundreds of miles, they all follow a simple pattern regardless of time and distance, and they have a strong tendency to return to locations they visited before.

“We found that human trajectories show a high degree of temporal and spatial regularity, each individual being characterized by a time-independent characteristic travel distance and a significant probability to return to a few highly frequented locations, like home and work” said Albert-László Barabási, Distinguished Professor of Physics and Director of the Center for Complex Network Research (CCNR) at Northeastern University.

“Our study shows that humans, after only three months of saturated behavior, reach stability in their mobility patterns, and the trajectories become identical,” added Marta C. González, Ph.D. in Physics and Research Assistant at the CCNR. “People devote their time to a few locations, although spending their remaining time in five to 50 places, visited with diminished regularity.”

The location of cell phone users was located every time they received or initiated a call or a text message, allowing Barabási and his team to reconstruct the user’s time-resolved trajectory. In order to make sure that the findings were not affected by an irregular call pattern, the researchers also studied the data set that captured the location of 206 cell phone users, recorded every two hours for an entire week. The two data sets showed similar results, the second validating the first.

The findings of this research complement the notion that human mobility can be generalized by the Lévy flight statistics, as suggested by a 2006 study that found that bank note dispersal is a proxy for human movement. That study analyzed the dispersal of about half-a-million dollar bills in the U.S. and concluded that human travel on geographical scales is an ambivalent and effectively superdiffusive process. By using a different methodology, Barabási’s group was able to find evidence to complement those findings.

“Contrary to bank notes, mobile phones are carried by the same individual during his/her daily routine, offering the best proxy to capture individual human trajectories, said César A. Hidalgo, Ph.D. and Research Assistant at the CCNR. “Also, unlike dollar bills that always follow the trajectory of the current owner and diffuse, humans display significant regularity and do not diffuse.”

“The inherent similarity in travel patterns of individuals could impact all phenomena driven by human mobility, from epidemic prevention to emergency response, urban planning, traffic forecasting and agent-based modeling,” added Barabási.

About Northeastern

Founded in 1898, Northeastern University is a private research university located in the heart of Boston. Northeastern is a leader in interdisciplinary research, urban engagement, and the integration of classroom learning with real-world experience. The university's distinctive cooperative education program, where students alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, is one of the largest and most innovative in the world. The University offers a comprehensive range of undergraduate and graduate programs leading to degrees through the doctorate in six undergraduate colleges, eight graduate schools, and two part-time divisions.

Renata Nyul | newswise
Further information:
http://www.northeastern.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>