Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Europe gets together to harness quantum physics

The long cherished goal of applying the strange properties of quantum mechanics to the macroscopic world we inhabit has been brought closer by a series of recent developments.

The exciting progress was made in the important field of quantum optics and discussed recently at a high level conference organised by the European Science Foundation in collaboration with the Fonds zur Förderung der wissenschaftlichen Forschung in Österreich (FWF) and the Leopold-Franzens-Universität Innsbruck (LFUI).

Quantum optics is fundamental to the whole field of quantum science, because it deals with the interactions between light and matter at the elementary level that determine ultimately how atoms and molecules behave. A thorough understanding of quantum optics in its broadest sense has the potential to lead to new (quantum) technologies that will help define the 21st century, according to Professor Jörg Schmiedmayer, who chaired the ESF conference.

Quantum science has great potential to revolutionise the worlds of computing and communications, enabling massive increases in processing power, data storage densities, and data transfer rates. Although most of the applications are still many years away, dramatic progress has been made laying the groundwork for projects at the laboratory level that demonstrate the concepts on a small scale. A gratifying aspect of the conference, according to Schmiedmayer, was the exceptionally high standard of contributions made, and excitement generated, by young researchers, who will be the standard bearers for the field over the important two decades to come. "The hot topic sessions, where mostly young researches presented their results, were definitively among the highlights of the conference," said Schmiedmayer. "At these very new science was discussed, science that was not even envisioned three years ago. Many results had not yet been presented elsewhere before."

Significant progress was noted for example in quantum communication, which promises to enable totally secure transmission of information over communications networks. It is easy to scramble information in such a way that it is totally undecipherable to anyone except the recipient, providing one has a secret key known only to both parties. The problem lies in transmitting that key between the parties while being sure it has not been eavesdropped in the process. Quantum cryptography uniquely provides a mechanism that gives that absolute assurance, for example through exploitation of quantum entanglement, in which the state of two particles is quantum correlated so that any attempt to intercept one would lead to a detectable change in the other. Applied to communications this enables both parties to know that nobody else has intercepted that key, which can then be used safely to scramble the actual information to be transmitted. Quantum Key Distribution (QKD) has already been demonstrated in the laboratory, but only over distances up to 150 Kms because at larger scales the optical fibres, or the air in free space, used to transmit the light signals absorbs and /or scrambles the individual photons, which then lose their quantum state. At the conference major steps towards realizing a 'quantum repeater' to faithfully connect communication channels were presented, which should allow eventually quantum communication to be extended over much longer, perhaps global, distances.

Quantum science and thereby quantum optics methods also have great potential for quantum computers, which promise to deliver undreamed of processing power. The conference heard about new experiments with superconducting quantum circuits, which could be used in future for novel integrated circuits involving quantum effects, a remarkable progress that brings the heart of quantum optics into solid state devices and electronic (quantum) circuits.

There was also great interest at the conference in high fidelity quantum gates in ion traps, according to Schmiedmayer. Ion traps were the first devices where quantum computation schemas were proposed and implemented. Now with high fidelity quantum operations, ion traps are the ideal platform to build and research quantum logic components for future scalable quantum computers. The idea is that ions, which are atoms or molecules that have lost or gained electrons from their outer shells, are suspended in free form in an electromagnetic field so that their energy levels can be manipulated precisely, down to the level of individual quanta. This could potentially be exploited to store and transfer information within a quantum computer.

A third topic was concerned with quantum simulations, where the tools of quantum optics are used to 'build' well controlled experimental models of theoretical concepts, which are in themselves too hard to be solved completely either by analytic methods or by simulation on classical computers. Such quantum simulations hold the promise to give us insight into some of the big outstanding problems in solid state physics, like the mechanism behind high temperature super conductivity, or problems on quantum magnetism. The conference heard about how to build specific 'interactions' needed to build such simulation models in the laboratory, or how quantum coherence and its dynamics can be probed in low dimensional systems

A forth focus was on Quantum Technologies and precision measurements. Remarkable progress was reported in controlling mechanical oscillators, bringing them close to the quantum regime, and the promise to put the 'quantum' into mechanics or small nano-objects in the very near future. There was great interest also in an experiment that demonstrated high fidelity Bloch oscillations by controlling atom-atom interactions. This opens the possibility for ultra precise quantum measurements with BEC's, an aspect which was believed to be very difficult because of the non linear nature of these systems.

There were many more exciting results and concepts presented and discussed. The conference fulfilled its objectives by bringing together people in these diverse quantum fields, and starting to take quantum mechanics into the material solid state world, according to Schmiedmayer.

The ESF-FWF Conference in Partnership with LFUI, on QUANTUM OPTICS: FROM PHOTONS AND ATOMS TO MOLECULES AND SOLID STATE SYSTEMS, was held in February 2008 at the Universitätszentrum Obergurgl, Ötz Valley, near Innsbruck, Austria.

Thomas Lau | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>