Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe gets together to harness quantum physics

05.06.2008
The long cherished goal of applying the strange properties of quantum mechanics to the macroscopic world we inhabit has been brought closer by a series of recent developments.

The exciting progress was made in the important field of quantum optics and discussed recently at a high level conference organised by the European Science Foundation in collaboration with the Fonds zur Förderung der wissenschaftlichen Forschung in Österreich (FWF) and the Leopold-Franzens-Universität Innsbruck (LFUI).

Quantum optics is fundamental to the whole field of quantum science, because it deals with the interactions between light and matter at the elementary level that determine ultimately how atoms and molecules behave. A thorough understanding of quantum optics in its broadest sense has the potential to lead to new (quantum) technologies that will help define the 21st century, according to Professor Jörg Schmiedmayer, who chaired the ESF conference.

Quantum science has great potential to revolutionise the worlds of computing and communications, enabling massive increases in processing power, data storage densities, and data transfer rates. Although most of the applications are still many years away, dramatic progress has been made laying the groundwork for projects at the laboratory level that demonstrate the concepts on a small scale. A gratifying aspect of the conference, according to Schmiedmayer, was the exceptionally high standard of contributions made, and excitement generated, by young researchers, who will be the standard bearers for the field over the important two decades to come. "The hot topic sessions, where mostly young researches presented their results, were definitively among the highlights of the conference," said Schmiedmayer. "At these very new science was discussed, science that was not even envisioned three years ago. Many results had not yet been presented elsewhere before."

Significant progress was noted for example in quantum communication, which promises to enable totally secure transmission of information over communications networks. It is easy to scramble information in such a way that it is totally undecipherable to anyone except the recipient, providing one has a secret key known only to both parties. The problem lies in transmitting that key between the parties while being sure it has not been eavesdropped in the process. Quantum cryptography uniquely provides a mechanism that gives that absolute assurance, for example through exploitation of quantum entanglement, in which the state of two particles is quantum correlated so that any attempt to intercept one would lead to a detectable change in the other. Applied to communications this enables both parties to know that nobody else has intercepted that key, which can then be used safely to scramble the actual information to be transmitted. Quantum Key Distribution (QKD) has already been demonstrated in the laboratory, but only over distances up to 150 Kms because at larger scales the optical fibres, or the air in free space, used to transmit the light signals absorbs and /or scrambles the individual photons, which then lose their quantum state. At the conference major steps towards realizing a 'quantum repeater' to faithfully connect communication channels were presented, which should allow eventually quantum communication to be extended over much longer, perhaps global, distances.

Quantum science and thereby quantum optics methods also have great potential for quantum computers, which promise to deliver undreamed of processing power. The conference heard about new experiments with superconducting quantum circuits, which could be used in future for novel integrated circuits involving quantum effects, a remarkable progress that brings the heart of quantum optics into solid state devices and electronic (quantum) circuits.

There was also great interest at the conference in high fidelity quantum gates in ion traps, according to Schmiedmayer. Ion traps were the first devices where quantum computation schemas were proposed and implemented. Now with high fidelity quantum operations, ion traps are the ideal platform to build and research quantum logic components for future scalable quantum computers. The idea is that ions, which are atoms or molecules that have lost or gained electrons from their outer shells, are suspended in free form in an electromagnetic field so that their energy levels can be manipulated precisely, down to the level of individual quanta. This could potentially be exploited to store and transfer information within a quantum computer.

A third topic was concerned with quantum simulations, where the tools of quantum optics are used to 'build' well controlled experimental models of theoretical concepts, which are in themselves too hard to be solved completely either by analytic methods or by simulation on classical computers. Such quantum simulations hold the promise to give us insight into some of the big outstanding problems in solid state physics, like the mechanism behind high temperature super conductivity, or problems on quantum magnetism. The conference heard about how to build specific 'interactions' needed to build such simulation models in the laboratory, or how quantum coherence and its dynamics can be probed in low dimensional systems

A forth focus was on Quantum Technologies and precision measurements. Remarkable progress was reported in controlling mechanical oscillators, bringing them close to the quantum regime, and the promise to put the 'quantum' into mechanics or small nano-objects in the very near future. There was great interest also in an experiment that demonstrated high fidelity Bloch oscillations by controlling atom-atom interactions. This opens the possibility for ultra precise quantum measurements with BEC's, an aspect which was believed to be very difficult because of the non linear nature of these systems.

There were many more exciting results and concepts presented and discussed. The conference fulfilled its objectives by bringing together people in these diverse quantum fields, and starting to take quantum mechanics into the material solid state world, according to Schmiedmayer.

The ESF-FWF Conference in Partnership with LFUI, on QUANTUM OPTICS: FROM PHOTONS AND ATOMS TO MOLECULES AND SOLID STATE SYSTEMS, was held in February 2008 at the Universitätszentrum Obergurgl, Ötz Valley, near Innsbruck, Austria.

Thomas Lau | alfa
Further information:
http://www.esf.org

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>