Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strange ring found circling dead star

30.05.2008
A paper published in Nature today co-authored by academics at the University of Hertfordshire, reports that NASA's Spitzer Space Telescope has found a bizarre ring of material around the magnetic remains of a star that blasted apart into smithereens.

The paper entitled An infrared ring around the magnetar SGR 1900+14 relates to the stellar corpse, called SGR 1900+14, which belongs to a class of objects known as magnetars. These are extremely dense collapsed cores of massive stars that blew up in supernova explosions, but unlike other dead stars, they slowly pulsate with X-rays and have tremendously strong magnetic fields.

The stellar corpse, called SGR 1900+14, belongs to a class of objects known as magnetars. These are the cores of massive stars that blew up in supernova explosions, but unlike other dead stars, they slowly pulsate with X-rays and have tremendously strong magnetic fields.

"The universe is a big place and weird things can happen," said Stefanie Wachter of NASA's Spitzer Science Center at the California Institute of Technology, Pasadena, who found the ring serendipitously. "I was flipping through archived Spitzer data of the object, and that's when I noticed it was surrounded by a ring we'd never seen before." Wachter is lead author of a paper about the findings in this week’s issue of Nature. You can see the ring at http://www.nasa.gov/mission_pages/spitzer/multimedia/20080528.html .

Wachter and her colleagues think that the ring, which is unlike anything ever seen before, formed in 1998 when the magnetar erupted in a giant flare. They believe the crusty surface of the magnetar cracked, sending out a flare, or blast of energy, that excavated a nearby cloud of dust, leaving an outer, dusty ring. This ring is oblong, with dimensions of about seven by three light-years. It appears to be flat, or two-dimensional, but the scientists said they can't rule out the possibility of a three-dimensional shell.

The discovery could help scientists figure out if a star's mass influences whether it becomes a magnetar when it dies. Though scientists know that stars above a certain mass will "go supernova," they do not know if mass plays a role in determining whether the star becomes a magnetar or a run-of-the-mill dead star. According to the science team, the ring demonstrates that SGR 1900+14 belongs to a nearby cluster of young, massive stars. By studying the masses of these nearby stars, the scientists might learn the approximate mass of the original star that exploded and became SGR 1900+14.

Dr Jonathan Granot of the University of Hertfordshire’s Centre for Astrophysics Research (http://star.herts.ac.uk/) said: “The shape and size of the dust-free cavity surrounding the magnetar provide unique and valuable information on the activity history of its giant-flares.These are rare events, where only three such events have ever been recorded from all known SGRs, and only one of them from SGR1900+14. The fact that the ring is elongated (with an axis ratio of about 2:1) implies that the giant flare was anisotropic - brighter in some directions relative to others (by a factor of several).”

Helene Murphy | alfa
Further information:
http://www.nasa.gov/spitzer
http://web.ipac.caltech.edu/staff/sscnews/private/MagnetarDisk/
http://www.herts.ac.uk

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>