Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spectral emissivity measurements for radiation thermometry

28.05.2008
Industry and research are increasingly relying on non-contact temperature measurements with the aid of heat radiation, for example, for the reliable and reproducible drying of car paint.

In order to attain exact and reliable results, the emissivity of the measured surface has to be known. It can only be determined precisely in complex measuring facilities. The Physikalisch-Technische Bundesanstalt (PTB) has developed a modern emissivity measuring facility for industry-oriented calibrations.

Today, the accuracy of industrial temperature measurements carried out with contact-free radiation thermometers, is often no longer limited by the quality of the radiation thermometers, but rather by insufficient knowledge of the emissivity of the surface observed. Industrial radiation thermometers can furnish a resolution of up to 20 mK, with an uncertainty of 1 K for temperature measurements of 100 °C. In contrast to this, the directional spectral emissivities of surfaces can often only be specified with standard measurement uncertainties of 5 %. When measuring a temperature of 100 °C in the spectral range by around 10 µm, this corresponds to a temperature uncertainty of typically 5 K.

The emissivity is not a constant, but rather changes in general with changes of the surface (roughness, oxidation, impurities etc.), the observation angle, the observation wavelength as well as the temperature. Furthermore, it is often distributed inhomogeneously over the surface. Precise temperature measurements therefore demand exact knowledge of the emissivity. To determine the variety of dependencies of the emissivity on the above-mentioned parameters, complex measuring facilities are necessary.

The spectral emissivity is measured in the PTB by comparing the radiances of a cavity radiator of high quality – resembling an almost ideal black body – with the sample to be investigated by means of a Fourier transform spectrometer, whereby the radiation of the environment and the inherent radiation of the spectrometer are taken into consideration. Holding the sample in a temperature-regulated hemisphere hereby guarantees a constant radiation exchange with the environment. The apparatus allows the determination of the directional spectral emissivity as well as of the total emissivity of opaque samples under ambient conditions in a temperature range from 80 °C to 250 °C and a wavelength range from 4 µm to 40 µm under emission angles of 5° to 70° with a relative standard measurement uncertainly of better than 2 %. The extrapolation of the measured values of the directed spectral emissivity for emission angles above 70° then allows the hemispherical spectral emissivity, which is especially important for calculations of the net radiation exchange, as well as the total emissivity to be calculated. The homogeneity of the directional spectral emissivity at 4 µm is determined with the help of a thermography camera.

The results of the first orders from customers have served, for example, to optimise the paint drying process in the automobile industry, the thermal design of furnaces as well as the monitoring of glass forming processes.

Another measuring facility is currently being set up in the PTB which will allow emissivity measurements to be performed under vacuum conditions in an extended temperature and wavelength range – in particular for space applications.

This text in the latest issue of PTB-news (08.2):
http://www.ptb.de/en/publikationen/news/html/news081/artikel/0813.htm
Contact:
Dr. Christian Monte, PTB Working Group 7.31 High-temperature Scale, Phone +4930-3481-7246, e-mail: christian.monte@ptb.de

Erika Schow | alfa
Further information:
http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2008/pitext/pi080527.html

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>