Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Lab free-electron laser upgrade could induce completely new phenomena in materials

04.07.2002


What questions will it answer; what opportunities will it offer?



History doesn’t record the moment when fully conscious humans asked the first question. The incessant push of human curiosity has nevertheless changed the world. Even so, despite the seemingly inexorable march of science and technology into the current century, questions don’t seem in short supply. Gwyn Williams, basic research program manager for Jefferson Lab’s Free-Electron Laser (FEL), suspects some important answers may be forthcoming as a result of the FEL upgrade currently underway.

"The FEL is such a powerful light source that it induces completely new phenomena in materials," Williams says. "All kinds of unexpected properties emerge. Creating carbon nanotubes [for electronics and super-strong structures] comes as a result of exciting graphite, for instance. This upgrade gives us a window with a whole new view. We’re beginning to truly understand how the world works at the level of a single atom."


Should such an enhanced understanding emerge, scientists and engineers could custom-design materials atom by atom. This prospect, embraced by those in the field known as nanotechnology, could begin a large-scale products revolution unprecedented in human history. First, however, researchers must significantly deepen their understanding of the submicroscopic. Williams points out that because of its power and precision, FEL light can help do just that, illuminating these smallest of realms: a kind of ultra-fast camera that will freeze-frame even the most complex physical or chemical reactions.

With the exception of density, a property of matter constrained and described by the nucleus within atoms, the physical properties of all materials are primarily determined by the way electrons act. Everyday technology, from lamps to laptops, is controlled by the behavior and flow of electrons, and is manifested in such properties as hardness, conductivity and materials-energy flow. Observing specific electron behavior, however, is difficult. Scientists who conduct such observations need an intense light source — and now have one, in the form of the FEL.

FEL research falls into three broad categories: photo-induced chemistry, biology and materials. Before beginning the upgrade, some 20 formal proposals had been made for FEL-focused research. Seventeen of these proposals were given FEL beam time before the FEL shutdown in November. These will be prioritized and will carry forward once the upgrade is complete.

Among the areas under investigation will be the function of protein molecules within human cells as well as the mechanisms that determine and degrade materials purity, such as the silicon that comprises many computer components. Scientists will also study the effects of new surface compounds, produced when metals bathed in nitrogen are exposed to FEL light, and explore novel areas such as "spintronics," which concerns the properties of next generation semiconductor designs that optimize performance using newly discovered properties of electrons.

The addition of ultraviolet-light (UV) capability will further augment the FEL’s utility by enabling experiments that assess the nature and extent of the human health risk arising from increased ultraviolet light. Further, because of the nature of its construction and operation, the FEL accelerator’s electron beam can produce light with a frequency in the range of thousands of trillions of cycles per second. This "terahertz" capacity could conceivably lead to imagers that could quickly detect biological agents, such as anthrax, and hunt for concealed land mines.

"As scientists and as people, we want to improve the quality of life," Williams says. "This machine, already the most powerful in the world, is getting even better. It should enable us to make important progress in the next several years."


###

Linda Ware | EurekAlert!

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>