Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Lab free-electron laser upgrade could induce completely new phenomena in materials

04.07.2002


What questions will it answer; what opportunities will it offer?



History doesn’t record the moment when fully conscious humans asked the first question. The incessant push of human curiosity has nevertheless changed the world. Even so, despite the seemingly inexorable march of science and technology into the current century, questions don’t seem in short supply. Gwyn Williams, basic research program manager for Jefferson Lab’s Free-Electron Laser (FEL), suspects some important answers may be forthcoming as a result of the FEL upgrade currently underway.

"The FEL is such a powerful light source that it induces completely new phenomena in materials," Williams says. "All kinds of unexpected properties emerge. Creating carbon nanotubes [for electronics and super-strong structures] comes as a result of exciting graphite, for instance. This upgrade gives us a window with a whole new view. We’re beginning to truly understand how the world works at the level of a single atom."


Should such an enhanced understanding emerge, scientists and engineers could custom-design materials atom by atom. This prospect, embraced by those in the field known as nanotechnology, could begin a large-scale products revolution unprecedented in human history. First, however, researchers must significantly deepen their understanding of the submicroscopic. Williams points out that because of its power and precision, FEL light can help do just that, illuminating these smallest of realms: a kind of ultra-fast camera that will freeze-frame even the most complex physical or chemical reactions.

With the exception of density, a property of matter constrained and described by the nucleus within atoms, the physical properties of all materials are primarily determined by the way electrons act. Everyday technology, from lamps to laptops, is controlled by the behavior and flow of electrons, and is manifested in such properties as hardness, conductivity and materials-energy flow. Observing specific electron behavior, however, is difficult. Scientists who conduct such observations need an intense light source — and now have one, in the form of the FEL.

FEL research falls into three broad categories: photo-induced chemistry, biology and materials. Before beginning the upgrade, some 20 formal proposals had been made for FEL-focused research. Seventeen of these proposals were given FEL beam time before the FEL shutdown in November. These will be prioritized and will carry forward once the upgrade is complete.

Among the areas under investigation will be the function of protein molecules within human cells as well as the mechanisms that determine and degrade materials purity, such as the silicon that comprises many computer components. Scientists will also study the effects of new surface compounds, produced when metals bathed in nitrogen are exposed to FEL light, and explore novel areas such as "spintronics," which concerns the properties of next generation semiconductor designs that optimize performance using newly discovered properties of electrons.

The addition of ultraviolet-light (UV) capability will further augment the FEL’s utility by enabling experiments that assess the nature and extent of the human health risk arising from increased ultraviolet light. Further, because of the nature of its construction and operation, the FEL accelerator’s electron beam can produce light with a frequency in the range of thousands of trillions of cycles per second. This "terahertz" capacity could conceivably lead to imagers that could quickly detect biological agents, such as anthrax, and hunt for concealed land mines.

"As scientists and as people, we want to improve the quality of life," Williams says. "This machine, already the most powerful in the world, is getting even better. It should enable us to make important progress in the next several years."


###

Linda Ware | EurekAlert!

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>