Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers Discover New Type of Pulsating White Dwarf Star

05.05.2008
Discovery helps solve riddle of where the carbon white dwarfs come from, and what happens to their hydrogen and helium

University of Texas at Austin astronomers Michael H. Montgomery and Kurtis A. Williams, along with graduate student Steven DeGennaro, have predicted and confirmed the existence of a new type of variable star, with the help of the 2.1-meter Otto Struve Telescope at McDonald Observatory. The discovery is announced in today's issue of Astrophysical Journal Letters.

This research was funded by the National Science Foundation and the Delaware Asteroseismic Research Center.

Called a "pulsating carbon white dwarf," this is the first new class of variable white dwarf star discovered in more than 25 years. Because the overwhelming majority of stars in the universe--including the sun--will end their lives as white dwarfs, studying the pulsations (i.e., variations in light output) of these newly discovered examples gives astronomers a window on an important end point in the lives of most stars.

A white dwarf star is the leftover remnant of a sun-like star that has burned all of the nuclear fuel in its core. It is extremely dense, packing half to 1.5 times the sun's mass into a volume about the size of Earth. Until recently, there were thought to be two main types of white dwarfs: those with an outer layer of hydrogen (about 80 percent of white dwarfs), and those with an outer layer of helium, whose hydrogen shells have somehow been stripped away (the other 20 percent).

Last year, University of Arizona astronomers Patrick Dufour and James Liebert discovered a third type of white dwarf star. For reasons that are not understood, these "hot carbon white dwarfs" have had both their hydrogen and helium shells stripped off, leaving their carbon layer exposed. Astronomers suspect that these could be among the most massive white dwarfs of all, the remnants of stars slightly too small to end their lives in a supernova explosion.

After these new carbon white dwarfs were announced, Montgomery calculated that pulsations in these stars were possible. Pulsating stars are of interest to astronomers because the changes in their light output can reveal what goes on in their interiors--similar to the way geologists study seismic waves from earthquakes to understand what goes on in Earth's interior. In fact, this type of star-study is called "asteroseismology."

So, Montgomery and Williams' team began a systematic study of carbon white dwarfs with the Struve Telescope at McDonald Observatory, looking for pulsators. DeGennaro discovered that a star about 800 light-years away in the constellation Ursa Major, called SDSS J142625.71+575218.3, fits the bill. Its light intensity varies regularly by nearly two percent about every eight minutes.

"The discovery that one of these stars is pulsating is remarkably important," said NSF astronomer Michael Briley. "This will allow us to probe the white dwarf's interior, which in turn should help us solve the riddle of where the carbon white dwarfs come from and what happens to their hydrogen and helium."

The star lies about ten degrees east northeast of Mizar, the middle star in the handle of the Big Dipper. This white dwarf has about the same mass as our Sun, but its diameter is smaller than Earth's. The star has a temperature of 35,000 degrees Fahrenheit (19,500 C), and is only 1/600th as bright as the Sun.

None of the other stars in their sample were found to pulsate. Given the masses and temperatures of the stars in their sample, SDSS J142625.71+575218.3 is the only one expected to pulsate, based on Montgomery's calculations.

The astronomers speculate that the pulsations are caused by changes in the star's carbon outer envelope as the star cools down from its formation as a hot white dwarf. The ionized carbon atoms in the star's outer layers return to a neutral state, triggering the pulsations.

There is a chance that the star's variations might have another cause. Further study is needed, the astronomers say. Either way, studying these stars will shed light on the unknown process that strips away their surface layers of hydrogen and helium to lay bare their carbon interiors.

Diane Banegas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>