Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Solar Games at Paranal

ESO Staff Share Stunning Images of Solar Phenomena

Cerro Paranal, home of ESO's Very Large Telescope, is certainly one of the best astronomical sites on the planet. Stunning images, obtained by ESO staff at Paranal, of the green and blue flashes, as well as of the so-called 'Gegenschein', are real cases in point.

The Earth's atmosphere is a gigantic prism that disperses sunlight. In the most ideal atmospheric conditions, such as those found regularly above Cerro Paranal, this will lead to the appearance of so-called green and blue flashes at sunset. The phenomenon is so popular on the site that it is now the tradition for the Paranal staff to gather daily on the telescope platform to observe the sunset and its possible green flash before starting their long night of observations.

The green and blue flashes are fleeting events that require an unobstructed view of the setting Sun, and a very stable atmosphere. These conditions are very often met at Paranal, a 2635m high mountain in the Chilean Atacama Desert, where the sky is cloudless more than 300 days a year. Paranal is home of ESO's Very Large Telescope, an ensemble of four 8.2-m telescopes and four 1.8-m Auxiliary Telescopes that together form the world's most advanced optical telescope.

ESO staff Stéphane Guisard has been chasing green flashes for many years and has been able to capture them on many occasions. The picture shown above is one of many examples from his collection. "The most challenging is to capture the green flash while still seeing the rest of the Sun with all its colours," says Guisard.

His colleague Guillaume Blanchard was even luckier. On Christmas Eve, as he was one of the few to follow the tradition of looking at the sunset, he had the chance to immortalise a blue flash using his hobby telescope.

ESO astronomer Yuri Beletsky also likes to take photographs from Paranal, but he prefers the night views. This allows him to make use of the unique conditions above the site to make stunning images. On some of these, he has captured other extremely interesting effects related to the Sun: the so-called Zodiacal light and the 'Gegenschein'.

Both the Zodiacal light and the Gegenschein (which is German for "counter shine") are due to reflected sunlight by interplanetary dust. These are so faint that they are only visible in places free from light pollution.

Most of the interplanetary dust in the Solar System lies in the ecliptic, the plane close to which the planets are moving around the Sun, and the Zodiacal light and Gegenschein are thus seen in the region centred around the ecliptic. While the Zodiacal light is seen in the vicinity of the Sun, the Gegenschein is seen in the direction opposite to the Sun.

Each of the small particles of dust, left over from comets and asteroids, acts as a small Moon reflecting the light coming from our host star. "If you could see the individual dust particles then you would see the ones in the middle of the Gegenschein looking like very tiny full moons, while the ones hidden in the faint part of the dust band would look like tiny crescent moons," explains ESO astronomer Colin Snodgrass. "But even the VLT cannot see such tiny individual dust particles out in space. Instead we see the combined effect, in photos like these, of millions of tiny dust particles reflecting light back to us from the Sun."

Henri Boffin | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>