Big black holes cook flambeed stellar pancakes

Scientists have long understood that massive black holes lurking in galactic nuclei and weighing millions of Suns can disrupt stars that come too close. Due to intense tidal forces, the black hole’s gravity pulls harder on the nearest part of the star, an imbalance that pulls the star apart over a period of hours, once it gets inside the so-called “tidal radius”.

Now, Matthieu Brassart and Jean-Pierre Luminet of the Observatoire de Paris-Meudon, France, say the strain of these tidal forces can also trigger a nuclear explosion powerful enough to destroy the star from within. They carried out computer simulations of the final moments of such an unfortunate star’s life, as it penetrates deeply into the tidal field of a massive black hole.

When the star gets close enough the black hole (without falling into), the tidal forces flatten it into a pancake shape. Previous studies already performed by Luminet and collaborators twenty years ago had suggested this flattening would increase the density and temperature inside the star enough to trigger intense nuclear reactions that would tear it apart. But other studies had suggested that the picture would be complicated by shock waves generated during the flattening process, and that no nuclear explosion should occur.

The new simulations investigate the effects of shock waves in detail, and find that even when their effects are included, the conditions favour a nuclear explosion which will completely destroy the star, and which will be powerful enough to hurl much of the star’s matter out of the black hole’s reach.

Stellar fireworks

The tidal disruption of stars by black holes may already have been observed by X-ray telescopes such as GALEX, XMM and Chandra, although at a much later stage : several months after the event that rips the star apart, its matter starts swirling into the hole, heats up and releases ultraviolet light and X-rays. However, if pancake stars really do explode, then they could in principle allow these events to be detected at a much earlier stage. Future observatories, such as the Large Synoptic Survey Telescope (LSST), which will detect large numbers of supernovae, could turn up some explosions of this type.

But this might be not the only hazard facing the doomed star. Brassart and Luminet calculated that the shock waves inside the stellar pancake carry a brief (The rate of such “flambeed pancake stars” is estimated to about 0.00001 event per galaxy. Since almost every galaxy – including our own Milky Way – harbors a massive black hole in its centre, and since the universe is transparent to hard X and gamma radiation, several events of this kind per year should be detectable within the full observable universe.

Conclusion

The planned high-energy, all-sky surveys are the best suited to detect more flares of this type because of their large sky coverage. By providing a quick localization of flambeed stellar pancakes, followed by the detection of the corresponding afterglows in the optical, infrared, and radio bands, these missions could bring as much to the understanding of stellar disruptions by black holes as the Beppo-Sax and Swift telescopes did for the comprehension of gamma-ray bursts.

Media Contact

Jean-Pierre Luminet alfa

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors