Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser light cools microchip

14.04.2008
MPQ scientists apply atomic laser cooling to mesoscopic systems

Macroscopic objects follow the laws of classical physics, microscopic objects obey the laws of quantum mechanics. This is for sure. But at what point does a system stop to behave classically and start to show quantum properties?

Mesoscopic systems with diameters of several micrometers like the ones a team of scientists around Dr. Tobias Kippenberg at the Max Planck Institute of Quantum Optics is dealing with may serve as a testing ground. As the scientists have shown in a recent publication [1] they have already succeeded in the damping of mechanical oscillations of a micro-resonator by applying the method of laser cooling which has been developed for single quantum particles.

Now they have shown that even "resolved-sideband cooling" - a special kind of laser cooling - is applicable to this object consisting of about 10 to the power of 14 molecules. This experiment is an important step towards attaining the ultimate quantum ground state of a mesoscopic object. The effective cooling process demonstrated here successfully may be of practical interest as well, since it may be used to improve techniques such as scanning probe microscopy.

The experiments of the independent Max Planck Junior Research Group "Laboratory of Photonics" headed by Dr. Tobias Kippenberg at MPQ, go back to an idea which has been formulated by the Russian theoretician Vladimir Braginski in the 1970ies. When light is confined in a cavity the phenomenon of dynamical back-action occurs: the pressure of the photons exerts a force that may be used to heat up as well as cool down the mechanical oscillator. However reaching the regime where dynamical back-action leads to efficient cooling requires optomechanical systems with high mechanical frequency and high optical finesse.

Only recent advances in materials and technology have enabled the creation of devices with which the idea of Braginski could be successfully demonstrated. Nowadays researchers around the world are seeking and racing to use lasers to cool mechanical oscillators to ever lower temperatures. At the moment a number of labs across the planet are working in this field, including the MPQ, the Laboratoire Kastler-Brossel in Paris and the Institute for Quantum Optics and Quantum Information in Vienna, in the USA the Yale University, the California Institute of Technology (Caltech), the National Institute of Standards and Technology (NIST), the Massachusetts Institute of Technology (MIT) and the University of California Santa Barbara (USCB).

Drawing on strong analogies with atomic laser cooling, theoretical work (in collaboration with Wilhelm Zwerger at TUM, and by a second group from Yale and LMU) has however identified a major obstacle in cooling to the quantum regime: The back-action forces are mediated by quantum objects, namely photons, and therefore exhibit quantum noise, driving the mechanical oscillator to random motion again.

For all experimental systems demonstrated to date this would prevent reaching the quantum ground state, in which the motional energy of the oscillator would be limited to its quantum mechanically allowed minimal value. But theorists also found a solution to this problem: Ground-state cooling should in principle be possible in the "resolved-sideband regime", as demonstrated with trapped atom and ions.

When a trapped ion oscillates with a certain frequency, its absorption spectrum consists of a series of sidebands that are displaced from the original resonance frequency by multiples of the oscillation frequency. Now cooling can be achieved by exciting the ion with laser light that is tuned to one of the energetically lower-lying sidebands. This way the photons that are absorbed by the ion are, on average, of lower energy than the photons that are emitted. This is how cooling proceeds.

In analogy to trapped ions, resolved sidebands also occur in the absorption spectra of mesoscopic optomechanical systems. Reaching this regime requires however that the mechanical oscillator frequency exceeds the optical dissipation rate of the optical resonator, that is, photons must be stored in the resonator for many mechanical oscillation periods.

"Only in this case, the cooling effect can outbalance the heating induced by the fluctuations of the light force", explains Albert Schließer, PhD student working on the project.

Together with his co-authors Rivière, Anetsberger and Dr. Arcizet he has now been able to demonstrate just this very regime experimentally - taking a key step towards ground state cooling. To this end, the researchers lithographically fabricated silica microtoroids (60 micrometer diameter, 70 Megahertz resonance frequency) in the cleanroom facilities of Prof. Jörg Kotthaus (Ludwig-Maximilians-Universität München).

These devices reside deeply in the resolved-sideband regime, and highly efficient cooling at unprecedented cooling rates is demonstrated. The effect of the laser cooling could be accurately quantified, as an independent laser system was used to monitor mechanical displacements with a sensitivity that reaches 10 to the power of -18 m (about 100,000,000-times smaller than the diameter of a hydrogen atom) in one second averaging time. If the ground state can be achieved remains to be proven; after all researchers worldwide have been working on this already for more than a decade.

But with the new method at hand - which has removed a fundamental roadblock - the way towards the ground state is now boldly signposted and will allow some exciting science over the coming years. [AS/OM]

[1]Schliesser, A., Del'Haye, P., Nooshi, N., Vahala, K. J. & Kippenberg, T. J.
Radiation pressure cooling of a micromechanical oscillator using dynamical backaction

Physical Review Letters 97, 243905 (2006).

Original publication:

Resolved Sideband Cooling of a Micromechanical Oscillator
A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet and T.J. Kippenberg
Nature Physics, DOI 10.1038/nphys939 (2008)
Contact:
Dr. Tobias Kippenberg
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 727
Fax: +49 - 89 / 32905 200
e-mail: tobias.kippenberg@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press & Public Relations
Phone: +49 - 89 / 32905 213
Fax: +49 - 89 / 32905 200
e-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | idw
Further information:
http://www.mpq.mpg.de
http://www.mpq.mpg.de/k-lab

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

A Nano-Roundabout for Light

09.12.2016 | Physics and Astronomy

Further Improvement of Qubit Lifetime for Quantum Computers

09.12.2016 | Physics and Astronomy

New weapon against Diabetes

09.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>