Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s largest digital camera to change view of the Universe

08.04.2008
Our view of the Universe is about to be changed by the largest and most detailed ‘map’ of the heavens ever produced.

The new ‘map’ was discussed at Queen’s University Belfast, by the driving force behind the construction and operation of the largest digital camera ever created, Doctor Nick Kaiser from the University of Hawai’i.

Speaking at the Royal Astronomical Society’s National Astronomy Meeting at Queen’s, Dr. Kaiser will explain how the first component of the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) is about to change our view of the Universe. By surveying the whole sky visible from the top of a dormant Hawaiian volcano, the Pan-STARRS1 (PS1) telescope will discover a myriad of asteroids, comets and exploding stars. In the process it will create the largest and most detailed map of the heavens ever produced.

“The Pan-STARRS project system has been designed to scan the sky very rapidly and will effectively generate a time-lapse movie of the entire visible sky. It exploits the combination of recent advances in detector and computer technology with the superb image quality obtainable at observing sites in Hawaii,” explained Dr. Kaiser.

The digital camera attached to the telescope contains 1300 Megapixels; the average digital camera in a high-street store has roughly only ten Megapixels. The PS1 telescope also has a field of view equivalent to that of 35 full moons and as a result the images taken by PS1 are of astounding quality and size.

Dr Kaiser added: “The observatory will take up to 1000 exposures per night and will generate mind boggling amounts of data. These will be made available for scientists to study via a revolutionary data archiving system.”

Dr Kaiser will also discuss the telescope’s hunt for dangerous asteroids.

Calculations led by Dr. Robert Jedicke at the University of Hawai’i indicate that PS1 by itself may discover up to five times as many near-Earth asteroids (NEAs) as all other survey telescopes put together.

Starting this summer, astronomers at Queen’s, led by Professor Alan Fitzsimmons of the Astrophysics Research Centre, will start a programme of studying small NEAs that up to now have been difficult to detect.

“The Pan-STARRS project is very sensitive to the smaller asteroids that pass by our planet” said Professor Fitzsimmons.

“Although so-called dinosaur-killer asteroids have been well studied, we know relatively little about the smaller objects. These can wipe out an area the size of Northern Ireland if they hit. We will use the PS1 discoveries to study their properties en-masse.”

Queen’s University is part of a UK consortium (along with Edinburgh and Durham Universities) that has invested in PS1 to support the three and a half year mission. In return Queen’s scientists will be able to study new asteroids, stars, galaxies and supernovae discovered by PS1 over the course of its mission.

PS1 will commence operations later this year, but it is just the beginning. It is a pathfinder for the full Pan-STARRS system that should be ready around 2011-2012. This will comprise four telescopes the size of PS1 and will continuously scan the sky for unknown astronomical objects.

Lisa Mitchell | alfa
Further information:
http://www.qub.ac.uk

More articles from Physics and Astronomy:

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

nachricht Large, distant comets more common than previously thought
26.07.2017 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>