Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Producing "synthetic metals" with radiation

07.04.2008
This week, UPM unveiled their latest research at the World's Largest Market-Place for Inventions in Geneva. This research is on a technique to transform non-conducting organic polymers into electricity conducting "synthetic metals" using radiation, which can be used for artificial muscles, antistatic clothing, rechargeable batteries and more

This week, University Putra Malaysia's team unveiled their latest inventions and products at the 34th International Exhibition of Inventions, New Techniques and Products in Geneva (April 2-6, 2008), also known as the World's Largest Market-Place for Inventions.

This research is on a technique to transform non-conducting organic polymers into electricity conducting "synthetic metals" using radiation. These "synthetic metals" can be used for electromagnetic shielding, artificial muscles, active electronic devices, antistatic clothing, rechargeable batteries, ion exchange membranes, electrical display, chemical and biochemical sensors, electrochemical actuators, switches, and molecular electronics.

TITLE: Polymerization of PVA/PANI Conducting Polymer Blends by Radiation Technique

RESEARCHERS: Elias Saion, Muhammed Ahmed Ali Omar, Azian Osman, Khrulzaman Mohd Dahlan, Taiman Kadni, Shahril Hashim.

Department of Physics
Faculty of Science
Universiti Putra Malaysia, 43400 UPM,
Serdang, Selangor, Malaysia.
Tel: +603-89466654
Email: elias@
Most of organic polymers are insulators. However, those with conjugated ƒà-electron backbones could be transformed into conducting polymers when they are treated with strong oxidizing or reducing agents. The pi-bonds are localized structural defects in the polymer chain known as polorons that allow conducting electricity. These ¡¥synthetic metals¡¦ have been attracted much attention from both fundamental scientific concepts and potential for new technology due to their excellent optical, electronic, and electrochemical properties. They offer a wide variety of new application including electromagnetic shielding, artificial muscles, active electronic devices, antistatic clothing, rechargeable batteries, ion exchange membranes, electrical display, chemical and biochemical sensors, electrochemical actuators, switches, and molecular electronics. Among these polymers, polyaniline (PANI) generates a special interest owing to its relative high conductivity and low cost, exhibit excellent environmental stability, and its polymerization is straightforward and proceeds with high yield. Polymerization of PANI is normally achieved by chemical doping process involving charge transfer through oxidation (p-type doping) or reduction (n-type doping) and by electrochemical doping process in which electrode supplies the redox charge to the conducting polymer, while ions diffuse into the conducting polymer from the electrolyte to compensate the electronic charge. We offer a new route for synthesizing PANI by radiation method through bond scission of Cl- ions and aniline radical from aniline hydrochloride (AniHCl) blended in polyvinyl alcohol (PVA). The PVA/AniHCl blend films were prepared by solvent casting in air. The influence of the 1.25-MeV gamma-ray dose and the polymerization kinetics were investigated by means of visible absorption spectroscopy, XRD, and conductivity measurements. The polymerization of PANI was evident as the blends change colour from white to dark green, peaking at the absorption band of 780 nm, which is the colour of PANI. There is a significant reduction in the peak intensity at the diffraction angle of 19.5o, as the dose increases to 50 kGy, indicating the crystalline phase of the blends has been transformed into the amorphous phase due to the polymerization of PANI. This allows an easy passage of electrical current through the blends as the conductivity increases rapidly from 1.0 x 10-6 S/cm at 0 Gy to 3.0 x 10-1 S/cm at 50 kGy due to increase number of polarons formed in PANI. This study reveals the possibility to develop PVA/PANI conducting polymer blends from PVA/AniHCl blends by using radiation technique.

Dr Nayan KANWAL | ResearchSEA
Further information:
http://www.inventions-geneva.ch/
http://www.putra.upm.edu.my
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>