Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Producing "synthetic metals" with radiation

07.04.2008
This week, UPM unveiled their latest research at the World's Largest Market-Place for Inventions in Geneva. This research is on a technique to transform non-conducting organic polymers into electricity conducting "synthetic metals" using radiation, which can be used for artificial muscles, antistatic clothing, rechargeable batteries and more

This week, University Putra Malaysia's team unveiled their latest inventions and products at the 34th International Exhibition of Inventions, New Techniques and Products in Geneva (April 2-6, 2008), also known as the World's Largest Market-Place for Inventions.

This research is on a technique to transform non-conducting organic polymers into electricity conducting "synthetic metals" using radiation. These "synthetic metals" can be used for electromagnetic shielding, artificial muscles, active electronic devices, antistatic clothing, rechargeable batteries, ion exchange membranes, electrical display, chemical and biochemical sensors, electrochemical actuators, switches, and molecular electronics.

TITLE: Polymerization of PVA/PANI Conducting Polymer Blends by Radiation Technique

RESEARCHERS: Elias Saion, Muhammed Ahmed Ali Omar, Azian Osman, Khrulzaman Mohd Dahlan, Taiman Kadni, Shahril Hashim.

Department of Physics
Faculty of Science
Universiti Putra Malaysia, 43400 UPM,
Serdang, Selangor, Malaysia.
Tel: +603-89466654
Email: elias@
Most of organic polymers are insulators. However, those with conjugated ƒà-electron backbones could be transformed into conducting polymers when they are treated with strong oxidizing or reducing agents. The pi-bonds are localized structural defects in the polymer chain known as polorons that allow conducting electricity. These ¡¥synthetic metals¡¦ have been attracted much attention from both fundamental scientific concepts and potential for new technology due to their excellent optical, electronic, and electrochemical properties. They offer a wide variety of new application including electromagnetic shielding, artificial muscles, active electronic devices, antistatic clothing, rechargeable batteries, ion exchange membranes, electrical display, chemical and biochemical sensors, electrochemical actuators, switches, and molecular electronics. Among these polymers, polyaniline (PANI) generates a special interest owing to its relative high conductivity and low cost, exhibit excellent environmental stability, and its polymerization is straightforward and proceeds with high yield. Polymerization of PANI is normally achieved by chemical doping process involving charge transfer through oxidation (p-type doping) or reduction (n-type doping) and by electrochemical doping process in which electrode supplies the redox charge to the conducting polymer, while ions diffuse into the conducting polymer from the electrolyte to compensate the electronic charge. We offer a new route for synthesizing PANI by radiation method through bond scission of Cl- ions and aniline radical from aniline hydrochloride (AniHCl) blended in polyvinyl alcohol (PVA). The PVA/AniHCl blend films were prepared by solvent casting in air. The influence of the 1.25-MeV gamma-ray dose and the polymerization kinetics were investigated by means of visible absorption spectroscopy, XRD, and conductivity measurements. The polymerization of PANI was evident as the blends change colour from white to dark green, peaking at the absorption band of 780 nm, which is the colour of PANI. There is a significant reduction in the peak intensity at the diffraction angle of 19.5o, as the dose increases to 50 kGy, indicating the crystalline phase of the blends has been transformed into the amorphous phase due to the polymerization of PANI. This allows an easy passage of electrical current through the blends as the conductivity increases rapidly from 1.0 x 10-6 S/cm at 0 Gy to 3.0 x 10-1 S/cm at 50 kGy due to increase number of polarons formed in PANI. This study reveals the possibility to develop PVA/PANI conducting polymer blends from PVA/AniHCl blends by using radiation technique.

Dr Nayan KANWAL | ResearchSEA
Further information:
http://www.inventions-geneva.ch/
http://www.putra.upm.edu.my
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>