Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Specially designed soils could help combat climate change

02.04.2008
Could part of the answer to saving the Earth from global warming lie in the earth beneath our feet?

A team from Newcastle University aims to design soils that can remove carbon from the atmosphere, permanently and cost-effectively. This has never previously been attempted anywhere in the world. The research is being funded by the Engineering and Physical Sciences Research Council.

The concept underlying the initiative exploits the fact that plants, crops and trees naturally absorb atmospheric carbon dioxide (CO2) during photosynthesis and then pump surplus carbon through their roots into the earth around them. In most soils, much of this carbon can escape back to the atmosphere or enters groundwater.

But in soils containing calcium-bearing silicates (natural or man-made), the team believe the carbon that oozes out of a plant’s roots may react with the calcium to form the harmless mineral calcium carbonate. The carbon then stays securely locked in the calcium carbonate, which simply remains in the soil, close to the plant’s roots, in the form of a coating on pebbles or as grains.

The scientists are investigating whether this process occurs as it may encourage the growing of more plants, crops etc in places where calcium-rich soils already exist. It would also open up the prospect that bespoke soils can be designed (i.e. with added calcium silicates, or specific plants) which optimise the carbon-capture process. Such soils could play a valuable role in carbon abatement all over the globe.

The team will first try to detect calcium carbonate in natural soils that have developed on top of calcium-rich rocks or been exposed to concrete dust (which contains man-made calcium silicates). They will then study artificial soils made at the University from a mixture of compost and calcium-rich rock. Finally, they will grow plants in purpose-made soils containing a high level of calcium silicates and monitor accumulation of calcium carbonate there.

The multi-disciplinary research team, including civil engineers, geologists, biologists and soil scientists, is led by David Manning, Professor of Soil Science at Newcastle University. “Scientists have known about the possibility of using soil as a carbon ‘sink’* for some time,” says Professor Manning. ”But no-one else has tried to design soils expressly for the purpose of removing and permanently locking up carbon. Once we’ve confirmed the feasibility of this method of carbon sequestration, we can develop a computer model that predicts how much calcium carbonate will form in specific types of soil, and how quickly. That will help us engineer soils with optimum qualities from a carbon abatement perspective. A key benefit is that combating climate change in this way promises to be cheap compared with other processes.”

Significant scope could exist to incorporate calcium-rich, carbon-locking soils in land restoration, land remediation and other development projects. Growing bioenergy crops on these soils could be one attractive option.

“The process we’re exploring might be able to contribute around 5-10% of the UK’s carbon reduction targets in the future,” says Professor Manning. “We could potentially see applications in 2-3 years, including a number of ‘quick wins’ in the land restoration sector.”

Natasha Richardson | EurekAlert!
Further information:
http://www.epsrc.ac.uk

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>