Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For the paper trail of life on Mars or other planets, find cellulose

02.04.2008
Looking for evidence of life on Mars or other planets? Finding cellulose microfibers would be the next best thing to a close encounter, according to new research from the University of North Carolina at Chapel Hill.

The cover story for the April issue of the journal Astrobiology, the new research also pushes back the earliest direct evidence of biological material on Earth by about 200 million years.

Cellulose is the tough, resilient substance best-known as the major structural component of plant matter. It is one of the most abundant biological materials on Earth, with plants, algae and bacteria generating an estimated 100 gigatons each year. Prehistoric forms of cellulose were made by cyanobacteria, the blue-green algae and bacteria still found in almost every conceivable habitat on land and in the oceans, which is known to have been present on Earth 2.8 billion years ago.

Jack D. Griffith, Ph.D., Kenan Distinguished Professor of microbiology and immunology at the UNC School of Medicine, found cellulose microfibers in samples he took from pristine ancient salt deposits deep beneath the New Mexico high desert.

“The age of the cellulose microfibers we describe in the study is estimated to be 253 million years old. It makes these the oldest native macromolecules to date to have been directly isolated, visualized and examined biochemically,” said Griffith, who is also a virology professor at the UNC Lineberger Comprehensive Cancer Center.

Until now, the oldest evidence of biological material from fragments of ancient protein – found in Tyrannosaurus Rex dinosaur fossils – was dated at 68 million years.

According to Griffith, the most primitive life forms likely developed means of polymerizing glucose – the energy currency of all known carbon-based life forms – into cellulose as a structural molecule. “Cellulose is like the bacteria’s house, the biofilm surrounding them. Plants adopted cellulose as their structural entity, and insects changed cellulose slightly to make kitin of which their exoskeletons are formed,” he said.

Griffith’s study took him to the U.S. Department of Energy’s Waste Isolation Pilot Plant (WIPP), the world’s first underground repository licensed to safely and permanently dispose of radioactive waste left over from nuclear weapons research and production, which is located near Carlsbad, N.M.

The waste is placed more than 2,000 feet below the surface in rooms excavated from the salt deposits that were laid more than 200 million years ago. The site was chosen to hold the waste because salt is somewhat plastic and will flow to seal any cracks that develop.

The salt samples Griffith retrieved from the WIPP were studied in his transmission electron microscopy lab at the Lineberger Comprehensive Cancer Center. In examining the content of fluid “inclusions”, or microscopic bubbles, in the salt and in solid halite (“rock salt”) crystals, he and his team found abundant cellulose microfibers that were “remarkably intact.”

Their examination clearly revealed the cellulose was in the form of microfibers as small as five nanometers in diameter, as well as composite ropes and mats. “The cellulose we isolated from the ancient salt deposits is very much like real, modern day cellulose: it looks like cellulose, behaves like cellulose, it’s chopped up by the same enzymes that cut modern day cellulose and it’s very intact,” Griffith said.

As to evidence of ancient DNA, Griffith said it was observed, but in much lesser amounts than cellulose.

“So in looking for evidence of life on Mars, for bacteria or higher plants that existed on Mars or other planets in the solar system, then looking for cellulose in salt deposits is probably a very good way to go. Cellulose appears to be highly stable and more resistant to ionizing radiation than DNA. And if it is relatively resistant to harsh conditions such as those found in space, it may provide the ideal ‘paper trail’ in the search for life on other planets.”

Patric Lane | EurekAlert!
Further information:
http://www.unc.edu

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>