Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For the paper trail of life on Mars or other planets, find cellulose

02.04.2008
Looking for evidence of life on Mars or other planets? Finding cellulose microfibers would be the next best thing to a close encounter, according to new research from the University of North Carolina at Chapel Hill.

The cover story for the April issue of the journal Astrobiology, the new research also pushes back the earliest direct evidence of biological material on Earth by about 200 million years.

Cellulose is the tough, resilient substance best-known as the major structural component of plant matter. It is one of the most abundant biological materials on Earth, with plants, algae and bacteria generating an estimated 100 gigatons each year. Prehistoric forms of cellulose were made by cyanobacteria, the blue-green algae and bacteria still found in almost every conceivable habitat on land and in the oceans, which is known to have been present on Earth 2.8 billion years ago.

Jack D. Griffith, Ph.D., Kenan Distinguished Professor of microbiology and immunology at the UNC School of Medicine, found cellulose microfibers in samples he took from pristine ancient salt deposits deep beneath the New Mexico high desert.

“The age of the cellulose microfibers we describe in the study is estimated to be 253 million years old. It makes these the oldest native macromolecules to date to have been directly isolated, visualized and examined biochemically,” said Griffith, who is also a virology professor at the UNC Lineberger Comprehensive Cancer Center.

Until now, the oldest evidence of biological material from fragments of ancient protein – found in Tyrannosaurus Rex dinosaur fossils – was dated at 68 million years.

According to Griffith, the most primitive life forms likely developed means of polymerizing glucose – the energy currency of all known carbon-based life forms – into cellulose as a structural molecule. “Cellulose is like the bacteria’s house, the biofilm surrounding them. Plants adopted cellulose as their structural entity, and insects changed cellulose slightly to make kitin of which their exoskeletons are formed,” he said.

Griffith’s study took him to the U.S. Department of Energy’s Waste Isolation Pilot Plant (WIPP), the world’s first underground repository licensed to safely and permanently dispose of radioactive waste left over from nuclear weapons research and production, which is located near Carlsbad, N.M.

The waste is placed more than 2,000 feet below the surface in rooms excavated from the salt deposits that were laid more than 200 million years ago. The site was chosen to hold the waste because salt is somewhat plastic and will flow to seal any cracks that develop.

The salt samples Griffith retrieved from the WIPP were studied in his transmission electron microscopy lab at the Lineberger Comprehensive Cancer Center. In examining the content of fluid “inclusions”, or microscopic bubbles, in the salt and in solid halite (“rock salt”) crystals, he and his team found abundant cellulose microfibers that were “remarkably intact.”

Their examination clearly revealed the cellulose was in the form of microfibers as small as five nanometers in diameter, as well as composite ropes and mats. “The cellulose we isolated from the ancient salt deposits is very much like real, modern day cellulose: it looks like cellulose, behaves like cellulose, it’s chopped up by the same enzymes that cut modern day cellulose and it’s very intact,” Griffith said.

As to evidence of ancient DNA, Griffith said it was observed, but in much lesser amounts than cellulose.

“So in looking for evidence of life on Mars, for bacteria or higher plants that existed on Mars or other planets in the solar system, then looking for cellulose in salt deposits is probably a very good way to go. Cellulose appears to be highly stable and more resistant to ionizing radiation than DNA. And if it is relatively resistant to harsh conditions such as those found in space, it may provide the ideal ‘paper trail’ in the search for life on other planets.”

Patric Lane | EurekAlert!
Further information:
http://www.unc.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>