Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New research dives into details of supernova

Astronomers have made the best determination of the power of a supernova explosion long after it was visible from Earth. This technique, using X-ray and optical observations, may help reveal the details of how some stars come to a cataclysmic death.

Using data from NASA’s Chandra X-ray Observatory, the Gemini Observatory and ESA’s XMM-Newton Observatory, two teams of international researchers, including Lawrence Livermore National Laboratory scientists Kem Cook and Sergei Nikolaev, determined that a supernova that occurred about 400 years ago was unusually bright and energetic.

By observing the remnant of a supernova and a light echo from the initial explosion, the teams have established the validity of a new method for studying a type of supernova that produces most of the iron in the universe. The two teams of researchers studied the supernova remnant and the supernova light echo that are located in the Large Magellanic Cloud (LMC), a small galaxy about 160,000 light years from Earth

This is the first time two methods – X-ray observations of the supernova remnant and optical observations of the expanding light echoes – have been combined to study a supernova. Until now, scientists could only estimate the power of explosions from the light seen soon after a star exploded, or from remnants that are several hundred years old, but not from both.

And the results could have implications in identifying similar incidents in the Milky Way.

“Classifying outbursts associated with centuries-old remnants is likely to be successful in providing new constraints on additional LMC supernovae as well as their historical counterparts in our own galaxy,” Cook said.

In 2004, scientists used Chandra to determine that a supernova remnant, known as SNR 0509-67.5 in the LMC, was a Type Ia supernova, which is caused by a white dwarf star in a binary system that reaches a critical mass and explodes.

In the new optical study, an estimate of the explosion’s power came from studying the original light of the explosion as it travels through space. Just as sound bounces off walls of a canyon, light waves create an echo by bouncing off dust clouds in space. The light from these echoes travels a longer path than the light that travels straight toward us, and so can be seen hundreds of years after the original explosion.

"People didn’t have advanced telescopes to study supernovas when they went off hundreds of years ago," said Armin Rest of Harvard University, who led the light echo observations. "But we’ve done the next best thing by looking around the site of the explosion and constructing an action replay of it."

First seen by the Cerro-Tololo Inter-American Observatory in Chile, the light echoes were observed in greater detail by Gemini Observatory in Chile. The optical spectra of the light echo were used to confirm the supernova was a Type Ia and to unambiguously determine the particular class of explosion and its energy.

The Chandra and XMM data were then independently used to calculate the amount of energy involved in the original explosion, using analysis of the supernova remnant and state-of-the-art explosion models. The conclusion was that the explosion was an especially energetic and bright variety of Type Ia supernova, providing strong evidence that the detailed explosion models are accurate.

Cook and Nikolaev are active members of the SuperMACHO project, a five-year microlensing survey of the LMC. The light echo research evolved out of the serendipitous discovery of light echos in SuperMACHO.

Both methods estimated a similar time since the explosion of about 400 years. An extra constraint on the age comes from the lack of recorded historical evidence for a recent supernova in the LMC. Because this star appears in the Southern Hemisphere, it likely would have been seen by navigators who noted similarly bright celestial events, if it had occurred less than about 400 years ago.

Because a Type Ia supernova brightness can be determined from its spectrum or the way its apparent brightness fades, Type Ia supernovae are important tools to study the expansion of the universe and the nature of dark energy.

“This is the first time that spectra were obtained of an ancient supernova, and they were good enough to allow us to identify the supernova as belonging to a particularly bright class of type Ia supernovae,” Cook said.

This work also is being extended to other supernova remnants and light echoes.

These results appear in two recently accepted papers in The Astrophysical Journal. The first discusses the spectrum obtained by Gemini, led by Rest. The second, with Carlos Badenes of Princeton as first author, details the Chandra observations of SNR 0509-67.5.

Other institutions involved in the research include Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Harvard-Smithsonian Center for Astrophysics, Gemini Observatory, McMaster University, Texas A&M University, Ohio State University, Washington University, University of Washington, Las Campanas Observatory, Pontificia Universidad Católica de Chile, Universidad de Chile and UC Berkeley.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>