Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research dives into details of supernova

25.03.2008
Astronomers have made the best determination of the power of a supernova explosion long after it was visible from Earth. This technique, using X-ray and optical observations, may help reveal the details of how some stars come to a cataclysmic death.

Using data from NASA’s Chandra X-ray Observatory, the Gemini Observatory and ESA’s XMM-Newton Observatory, two teams of international researchers, including Lawrence Livermore National Laboratory scientists Kem Cook and Sergei Nikolaev, determined that a supernova that occurred about 400 years ago was unusually bright and energetic.

By observing the remnant of a supernova and a light echo from the initial explosion, the teams have established the validity of a new method for studying a type of supernova that produces most of the iron in the universe. The two teams of researchers studied the supernova remnant and the supernova light echo that are located in the Large Magellanic Cloud (LMC), a small galaxy about 160,000 light years from Earth

This is the first time two methods – X-ray observations of the supernova remnant and optical observations of the expanding light echoes – have been combined to study a supernova. Until now, scientists could only estimate the power of explosions from the light seen soon after a star exploded, or from remnants that are several hundred years old, but not from both.

And the results could have implications in identifying similar incidents in the Milky Way.

“Classifying outbursts associated with centuries-old remnants is likely to be successful in providing new constraints on additional LMC supernovae as well as their historical counterparts in our own galaxy,” Cook said.

In 2004, scientists used Chandra to determine that a supernova remnant, known as SNR 0509-67.5 in the LMC, was a Type Ia supernova, which is caused by a white dwarf star in a binary system that reaches a critical mass and explodes.

In the new optical study, an estimate of the explosion’s power came from studying the original light of the explosion as it travels through space. Just as sound bounces off walls of a canyon, light waves create an echo by bouncing off dust clouds in space. The light from these echoes travels a longer path than the light that travels straight toward us, and so can be seen hundreds of years after the original explosion.

"People didn’t have advanced telescopes to study supernovas when they went off hundreds of years ago," said Armin Rest of Harvard University, who led the light echo observations. "But we’ve done the next best thing by looking around the site of the explosion and constructing an action replay of it."

First seen by the Cerro-Tololo Inter-American Observatory in Chile, the light echoes were observed in greater detail by Gemini Observatory in Chile. The optical spectra of the light echo were used to confirm the supernova was a Type Ia and to unambiguously determine the particular class of explosion and its energy.

The Chandra and XMM data were then independently used to calculate the amount of energy involved in the original explosion, using analysis of the supernova remnant and state-of-the-art explosion models. The conclusion was that the explosion was an especially energetic and bright variety of Type Ia supernova, providing strong evidence that the detailed explosion models are accurate.

Cook and Nikolaev are active members of the SuperMACHO project, a five-year microlensing survey of the LMC. The light echo research evolved out of the serendipitous discovery of light echos in SuperMACHO.

Both methods estimated a similar time since the explosion of about 400 years. An extra constraint on the age comes from the lack of recorded historical evidence for a recent supernova in the LMC. Because this star appears in the Southern Hemisphere, it likely would have been seen by navigators who noted similarly bright celestial events, if it had occurred less than about 400 years ago.

Because a Type Ia supernova brightness can be determined from its spectrum or the way its apparent brightness fades, Type Ia supernovae are important tools to study the expansion of the universe and the nature of dark energy.

“This is the first time that spectra were obtained of an ancient supernova, and they were good enough to allow us to identify the supernova as belonging to a particularly bright class of type Ia supernovae,” Cook said.

This work also is being extended to other supernova remnants and light echoes.

These results appear in two recently accepted papers in The Astrophysical Journal. The first discusses the spectrum obtained by Gemini, led by Rest. The second, with Carlos Badenes of Princeton as first author, details the Chandra observations of SNR 0509-67.5.

Other institutions involved in the research include Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Harvard-Smithsonian Center for Astrophysics, Gemini Observatory, McMaster University, Texas A&M University, Ohio State University, Washington University, University of Washington, Las Campanas Observatory, Pontificia Universidad Católica de Chile, Universidad de Chile and UC Berkeley.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://publicaffairs.llnl.gov/news/news_releases/2008/NR-08-03-06.html

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>