Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research dives into details of supernova

25.03.2008
Astronomers have made the best determination of the power of a supernova explosion long after it was visible from Earth. This technique, using X-ray and optical observations, may help reveal the details of how some stars come to a cataclysmic death.

Using data from NASA’s Chandra X-ray Observatory, the Gemini Observatory and ESA’s XMM-Newton Observatory, two teams of international researchers, including Lawrence Livermore National Laboratory scientists Kem Cook and Sergei Nikolaev, determined that a supernova that occurred about 400 years ago was unusually bright and energetic.

By observing the remnant of a supernova and a light echo from the initial explosion, the teams have established the validity of a new method for studying a type of supernova that produces most of the iron in the universe. The two teams of researchers studied the supernova remnant and the supernova light echo that are located in the Large Magellanic Cloud (LMC), a small galaxy about 160,000 light years from Earth

This is the first time two methods – X-ray observations of the supernova remnant and optical observations of the expanding light echoes – have been combined to study a supernova. Until now, scientists could only estimate the power of explosions from the light seen soon after a star exploded, or from remnants that are several hundred years old, but not from both.

And the results could have implications in identifying similar incidents in the Milky Way.

“Classifying outbursts associated with centuries-old remnants is likely to be successful in providing new constraints on additional LMC supernovae as well as their historical counterparts in our own galaxy,” Cook said.

In 2004, scientists used Chandra to determine that a supernova remnant, known as SNR 0509-67.5 in the LMC, was a Type Ia supernova, which is caused by a white dwarf star in a binary system that reaches a critical mass and explodes.

In the new optical study, an estimate of the explosion’s power came from studying the original light of the explosion as it travels through space. Just as sound bounces off walls of a canyon, light waves create an echo by bouncing off dust clouds in space. The light from these echoes travels a longer path than the light that travels straight toward us, and so can be seen hundreds of years after the original explosion.

"People didn’t have advanced telescopes to study supernovas when they went off hundreds of years ago," said Armin Rest of Harvard University, who led the light echo observations. "But we’ve done the next best thing by looking around the site of the explosion and constructing an action replay of it."

First seen by the Cerro-Tololo Inter-American Observatory in Chile, the light echoes were observed in greater detail by Gemini Observatory in Chile. The optical spectra of the light echo were used to confirm the supernova was a Type Ia and to unambiguously determine the particular class of explosion and its energy.

The Chandra and XMM data were then independently used to calculate the amount of energy involved in the original explosion, using analysis of the supernova remnant and state-of-the-art explosion models. The conclusion was that the explosion was an especially energetic and bright variety of Type Ia supernova, providing strong evidence that the detailed explosion models are accurate.

Cook and Nikolaev are active members of the SuperMACHO project, a five-year microlensing survey of the LMC. The light echo research evolved out of the serendipitous discovery of light echos in SuperMACHO.

Both methods estimated a similar time since the explosion of about 400 years. An extra constraint on the age comes from the lack of recorded historical evidence for a recent supernova in the LMC. Because this star appears in the Southern Hemisphere, it likely would have been seen by navigators who noted similarly bright celestial events, if it had occurred less than about 400 years ago.

Because a Type Ia supernova brightness can be determined from its spectrum or the way its apparent brightness fades, Type Ia supernovae are important tools to study the expansion of the universe and the nature of dark energy.

“This is the first time that spectra were obtained of an ancient supernova, and they were good enough to allow us to identify the supernova as belonging to a particularly bright class of type Ia supernovae,” Cook said.

This work also is being extended to other supernova remnants and light echoes.

These results appear in two recently accepted papers in The Astrophysical Journal. The first discusses the spectrum obtained by Gemini, led by Rest. The second, with Carlos Badenes of Princeton as first author, details the Chandra observations of SNR 0509-67.5.

Other institutions involved in the research include Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Harvard-Smithsonian Center for Astrophysics, Gemini Observatory, McMaster University, Texas A&M University, Ohio State University, Washington University, University of Washington, Las Campanas Observatory, Pontificia Universidad Católica de Chile, Universidad de Chile and UC Berkeley.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://publicaffairs.llnl.gov/news/news_releases/2008/NR-08-03-06.html

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>