Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Superdense' coding gets denser

25.03.2008
The record for the most amount of information sent by a single photon has been broken by researchers at the University of Illinois. Using the direction of “wiggling” and “twisting” of a pair of hyper-entangled photons, they have beaten a fundamental limit on the channel capacity for dense coding with linear optics.

“Dense coding is arguably the protocol that launched the field of quantum communication,” said Paul Kwiat, a John Bardeen Professor of Physics and Electrical and Computer Engineering. “Today, however, more than a decade after its initial experimental realization, channel capacity has remained fundamentally limited as conceived for photons using conventional linear elements.”

In classical coding, a single photon will convey only one of two messages, or one bit of information. In dense coding, a single photon can convey one of four messages, or two bits of information.

“Dense coding is possible because the properties of photons can be linked to one another through a peculiar process called quantum entanglement,” Kwiat said. “This bizarre coupling can link two photons, even if they are located on opposite sides of the galaxy.”

Using linear elements, however, the standard protocol is fundamentally limited to convey only one of three messages, or 1.58 bits. The new experiment surpasses that threshold by employing pairs of photons entangled in more ways than one (hyper-entangled). As a result, additional information can be sent and correctly decoded to achieve the full power of dense coding.

Kwiat, graduate student Julio Barreiro and postdoctoral researcher Tzu-Chieh Wei (now at the University of Waterloo) describe their recent experiment in a paper accepted for publication in the journal Nature Physics, and posted on its Web site.

Through the process of spontaneous parametric down conversion in a pair of nonlinear crystals, the researchers first produce pairs of photons simultaneously entangled in polarization, or “wiggling” direction, and in orbital angular momentum, or “twisting” direction. They then encode a message in the polarization state by applying birefringent phase shifts with a pair of liquid crystals.

“While hyper-entanglement in spin and orbital angular momentum enables the transmission of two bits with a single photon,” Barreiro said, “atmospheric turbulence can cause some of the quantum states to easily decohere, thus limiting their likely communication application to satellite-to-satellite transmissions.”

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>