Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic levitation gives computer users sense of touch

05.03.2008
NSF makes Carnegie Mellon invention available to more researchers

Computers, long used as tools to design and manipulate three-dimensional objects, may soon provide people with a way to sense the texture of those objects or feel how they fit together, thanks to a haptic, or touch-based, interface developed at Carnegie Mellon University.

Unlike most other haptic interfaces that rely on motors and mechanical linkages to provide some sense of touch or force feedback, the device developed by Ralph Hollis, research professor in Carnegie Mellon’s Robotics Institute, uses magnetic levitation and a single moving part to give users a highly realistic experience. Users can perceive textures, feel hard contacts and notice even slight changes in position while using an interface that responds rapidly to movements.

“We believe this device provides the most realistic sense of touch of any haptic interface in the world today,” said Hollis, whose research group built a working version of the device in 1997. With the help of a $300,000 National Science Foundation grant, however, he and his colleagues have improved its performance, enhanced its ergonomics and lowered its cost. The grant also enabled them to build 10 copies, six of which are being distributed to haptic researchers across the U.S. and Canada.

“We have gone from the prototype to a much more advanced system that other researchers can use,” Hollis said. Putting the instrument in the hands of other researchers is critical in a young, developing field such as haptic technology, he emphasized. Though haptic interfaces have uses in engineering design, entertainment, assembly, remote operation of robots, and in medical and dental training, their full potential has yet to be explored. That’s particularly the case for magnetic levitation haptic interfaces because so few have been available for use by researchers, he added.

“This is an affordable device that’s also practical,” said Hollis, who has started a spinoff company to build additional devices. “Now other people can have this technology, and this represents technology transfer in the very real sense.”

Six devices will be delivered to researchers at Harvard, Stanford, Purdue and Cornell, as well as to the universities of Utah and British Columbia. All are members of the Magnetic Levitation Haptic Consortium, an international group dedicated to fostering increased use of this technology.

Hong Tan, associate professor of electrical and computer engineering at Purdue University and a consortium member, studies human perception of fine surface textures — work that requires simulation resolution at the micron level. “This is beyond the capability of most commercially available haptic devices, but the maglev device developed by Dr. Hollis will make it possible for us to continue this research,” she said.

“The field of haptic research and development is expanding rapidly,” said Rob Conway, project manager in Carnegie Mellon’s Center for Technology Transfer. “Carnegie Mellon’s research opens new possibilities by joining the world of haptic feedback with a comfortable magnetic levitation interface. The magnetic levitation decouples the interface device from the mechanical world, eliminating friction, backlash, jump, sticking and other interfering effects, so that the user feels only the artificial environment in complete accuracy down to the micro scale.”

The system eliminates the bulky links, cables and general mechanical complexity of other haptic devices on the market today in favor of a single lightweight moving part that floats on magnetic fields.

At the heart of the maglev haptic interface is a bowl-shaped device called a flotor that is embedded with six coils of wire. Electric current flowing through the coils interacts with powerful permanent magnets underneath, causing the flotor to levitate. A control handle is attached to the flotor.

A user moves the handle much like a computer mouse, but in three dimensions with six degrees of freedom — up/down, side to side, back/forth, yaw, pitch and roll. Optical sensors measure the position and orientation of the flotor, and this information is used to control the position and orientation of a virtual object on the computer display. As this virtual object encounters other virtual surfaces and objects, corresponding signals are transmitted to the flotor’s electrical coils, resulting in haptic feedback to the user. Hollis and his colleagues will demonstrate the new maglev haptic interfaces at the IEEE 16th Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, March 13-14 in Reno, Nevada.

Anne Watzman | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>