Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic levitation gives computer users sense of touch

05.03.2008
NSF makes Carnegie Mellon invention available to more researchers

Computers, long used as tools to design and manipulate three-dimensional objects, may soon provide people with a way to sense the texture of those objects or feel how they fit together, thanks to a haptic, or touch-based, interface developed at Carnegie Mellon University.

Unlike most other haptic interfaces that rely on motors and mechanical linkages to provide some sense of touch or force feedback, the device developed by Ralph Hollis, research professor in Carnegie Mellon’s Robotics Institute, uses magnetic levitation and a single moving part to give users a highly realistic experience. Users can perceive textures, feel hard contacts and notice even slight changes in position while using an interface that responds rapidly to movements.

“We believe this device provides the most realistic sense of touch of any haptic interface in the world today,” said Hollis, whose research group built a working version of the device in 1997. With the help of a $300,000 National Science Foundation grant, however, he and his colleagues have improved its performance, enhanced its ergonomics and lowered its cost. The grant also enabled them to build 10 copies, six of which are being distributed to haptic researchers across the U.S. and Canada.

“We have gone from the prototype to a much more advanced system that other researchers can use,” Hollis said. Putting the instrument in the hands of other researchers is critical in a young, developing field such as haptic technology, he emphasized. Though haptic interfaces have uses in engineering design, entertainment, assembly, remote operation of robots, and in medical and dental training, their full potential has yet to be explored. That’s particularly the case for magnetic levitation haptic interfaces because so few have been available for use by researchers, he added.

“This is an affordable device that’s also practical,” said Hollis, who has started a spinoff company to build additional devices. “Now other people can have this technology, and this represents technology transfer in the very real sense.”

Six devices will be delivered to researchers at Harvard, Stanford, Purdue and Cornell, as well as to the universities of Utah and British Columbia. All are members of the Magnetic Levitation Haptic Consortium, an international group dedicated to fostering increased use of this technology.

Hong Tan, associate professor of electrical and computer engineering at Purdue University and a consortium member, studies human perception of fine surface textures — work that requires simulation resolution at the micron level. “This is beyond the capability of most commercially available haptic devices, but the maglev device developed by Dr. Hollis will make it possible for us to continue this research,” she said.

“The field of haptic research and development is expanding rapidly,” said Rob Conway, project manager in Carnegie Mellon’s Center for Technology Transfer. “Carnegie Mellon’s research opens new possibilities by joining the world of haptic feedback with a comfortable magnetic levitation interface. The magnetic levitation decouples the interface device from the mechanical world, eliminating friction, backlash, jump, sticking and other interfering effects, so that the user feels only the artificial environment in complete accuracy down to the micro scale.”

The system eliminates the bulky links, cables and general mechanical complexity of other haptic devices on the market today in favor of a single lightweight moving part that floats on magnetic fields.

At the heart of the maglev haptic interface is a bowl-shaped device called a flotor that is embedded with six coils of wire. Electric current flowing through the coils interacts with powerful permanent magnets underneath, causing the flotor to levitate. A control handle is attached to the flotor.

A user moves the handle much like a computer mouse, but in three dimensions with six degrees of freedom — up/down, side to side, back/forth, yaw, pitch and roll. Optical sensors measure the position and orientation of the flotor, and this information is used to control the position and orientation of a virtual object on the computer display. As this virtual object encounters other virtual surfaces and objects, corresponding signals are transmitted to the flotor’s electrical coils, resulting in haptic feedback to the user. Hollis and his colleagues will demonstrate the new maglev haptic interfaces at the IEEE 16th Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, March 13-14 in Reno, Nevada.

Anne Watzman | EurekAlert!
Further information:
http://www.cmu.edu

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>