Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Star Tiger to unveil submillimetre wave secrets

05.06.2002


The Star Tiger team today begins a four-month pioneering research and development project at Rutherford Appleton Laboratories (RAL), which could lead to a real breakthrough for submillimetre wave imaging.



For the first time under the ESA Star Tiger initiative, eleven scientists and specialists from seven different European countries (The United Kingdom, Ireland, Italy, Germany, France, the Netherlands, and Spain) are working together in an innovative way. The idea is to get together a small group of highly motivated researchers, grant them full access to laboratory and production facilities, remove all administrative distractions, and let them work for an intense period of four months.
What is Star Tiger?

Star Tiger stands for `Space Technology Advancements by Resourceful, Targeted and Innovative Groups of Experts and Researchers`, a pioneering activity under the European Space Agency`s Basic Technology Research Programme (TRP) to facilitate innovative, breakthrough research. The main aim is to reduce dramatically the development time for critical space technology programmes.


The goal of this Star Tiger project is to realise the world’s first compact submillimetre wave imager using state-of-the-art micro-electro-mechanical technology. Such an imager is acknowledged to break a number of barriers today limiting scientific research in several fields.

"If we succeed in building such an imager operating at these frequencies, it will represent a true breakthrough for submillimetre wave remote sensing from space,” said Peter de Maagt, ESA`s Project Manager for Star Tiger. “In the field of planetary, cometary and atmospheric sensing, imaging arrays capable of measuring height-resolved spectral features in the submillimetre frequency range will have a major impact on instrumentation for monitoring issues such as climate change and ozone chemistry."

For space astronomy observation the submillimetre wavelength will open up a virtually unexplored part of the spectrum. This could answer some of the big questions of how galaxies were formed in the early Universe, and how stars form, and have been forming, throughout the history of the Universe.

On Earth such an imager has already been identified to be potentially very useful in medicine for early diagnosis of skin cancer, process control in industrial manufacturing, and non-invasive security systems for airports and other public areas. By observing submillimetre waves it is possible to see through many materials, and obtain the equivalent of an X-ray image without the use of X-rays.

“The unique properties of submillimetre waves mean that there undoubtedly will be many other new applications. We just do not know how many yet,” continued De Maagt.

Eleven innovative brains

ESA and RAL have put together a team of professionals for the Star Tiger project. Eleven applicants were selected last April to cover all the necessary fields of expertise.

“We have been very lucky,” explained Dr Chris Mann, the Project Manager at RAL. “We got many applications from very motivated and highly experienced researchers who were willing to put in the necessary time and effort over the summer to make this project a success. The eleven selected team members cover together all the technologies required to develop a compact colour submillimetre wave imager.”

The imager will integrate such innovative technology areas as planar antenna technology, planar detector technology, micro-machining technology, photonic band gap materials and miniaturised back-end electronics.

The key to success is the ready access to state-of-the-art equipment, facilities, computing power and technical support. The Space Science and Technology Department at RAL with top class laboratories, and some of the most highly regarded scientists and engineers, is the ideal setting for the project.

Geoff McBride, Deputy Project Manager at RAL added, “we are happy to carry out this project at RAL and many of my colleagues are ready to provide assistance. The Star Tiger project team will have at their disposal all the resources of our Central Microstructure Facility and Millimetre Wave Technology Group.” A dedicated support team of many engineers and scientists at RAL will assist the Star Tiger team over the four-month project period.

Official inauguration

On Monday 24 June, the Star Tiger project will be officially inaugurated at Rutherford Appleton Laboratory (RAL) in Oxfordshire near Didcot. Among the invited speakers is Lord Sainsbury, Parliamentary Under-Secretary of State for Science and Innovation in the UK.

Peter de Maagt | alfa

More articles from Physics and Astronomy:

nachricht Turmoil in sluggish electrons’ existence
23.05.2017 | Max-Planck-Institut für Quantenoptik

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>