Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain waves pattern themselves after rhythms of nature

18.02.2008
The same rules of physics that govern molecules as they condense from gas to liquid, or freeze from liquid to solid, also apply to the activity patterns of neurons in the human brain. University of Chicago mathematician Jack Cowan will offer this and related insights on the physics of brain activity this week in Boston during the annual meeting of the American Association for the Advancement of Science.

“Structures built from a very large number of units can exhibit sharp transitions from one state to another state, which physicists call phase transitions,” said Cowan, a Professor in Mathematics and Neurology at Chicago. “Strange and interesting things happen in the neighborhood of a phase transition.”

When liquids undergo phase transitions, they evaporate into gas or freeze into ice. When the brain undergoes a phase transition, it moves from random to patterned activity. “The brain at rest produces random activity,” Cowan said, or what physicists call “Brownian motion.”

Although the bulk of his work involves deriving equations, Cowan’s findings mesh well with laboratory data generated on the cerebral cortex and electroencephalograms. His latest findings show that the same mathematical tools physicists use to describe the behavior of subatomic particles and the dynamics of liquids and solids can now be applied to understanding how the brain generates its various rhythms.

These include the delta waves generated during sleep, the alpha waves of the visual brain, and the gamma waves, discovered during the last decade, which seem related to information processing. “The resting state of brain activity seems to have a statistical structure that’s characteristic of a certain kind of phase transition,” Cowan said. “The brain likes to sit there because that’s the place where information processing is optimized.”

Cowan organized a session for AAAS on Mathematics and the Brain, which will take place from 8:30 to 10 a.m. EST Saturday, Feb. 16. He also will participate in a news briefing on the topic at 3 p.m. EST Friday, Feb. 15. Joining him at both events will be mathematician Nancy Kopell of Boston University and computational neuroscientist Tomaso Poggio of the Massachusetts Institute of Technology.

At this stage of his research, Cowan said it would be premature and speculative for him to try to relate how phase transitions in the brain might relate to neurological conditions or states of human consciousness. “That’s for the future,” he said.

Another component of his latest research is the close relationship between spontaneous pattern formation in brain circuits and in chemical reaction networks. In this research, he shows how mathematics can help explain visual hallucinations and how the visual cortex obtained its stripes, which are visible to the naked eye when removed from cadavers.

“This line of research on pattern formation can be traced back to Alan Turing, who also founded the modern science of computation,” said Terrence Sejnowski of the Salk Institute for Biological Studies in La Jolla, Calif., who is a leading specialist in computational neurobiology.

Cowan’s quest to understand the brain’s workings using numerical methods spans more than four decades. Along the way he has collaborated with a series of Ph.D. students and colleagues in physics, mathematics, biology and neuroscience.

In 1972, he and postdoctoral fellow Hugh Wilson, now of Canada’s York University, formulated a set of equations that could describe the dynamics of neural networks. Now called “Wilson-Cowan equations,” they became a mainstay of neural network research. “But I always knew that those equations were inadequate, so I kept thinking about them,” Cowan said.

Then in 1985, he ran across an article in a Japanese journal that described a statistical physics approach to chemical reaction networks. “It took me years to understand how to use these tools for biological networks,” he said. “It so happens that there is an analogy between the behavior of chemical reaction networks and neural networks.”

His research career began in 1962, when as a graduate student in electrical engineering, he worked with the founders of neural network theory. These included Norbert Wiener, who died in 1964, before they could work jointly on the problem that Cowan continues to address.

“I didn’t really understand what he was saying to me until I worked it out myself. He was one of the great mathematicians of the 20th century,” Cowan said.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>