Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worldwide effort bringing ALMA telescope into reality

18.02.2008
In the thin, dry air of northern Chile's Atacama Desert, at an altitude of 16,500 feet, an amazing new telescope system is taking shape, on schedule to provide the world's astronomers with unprecedented views of the origins of stars, galaxies, and planets. The Atacama Large Millimeter/submillimeter Array (ALMA) will open an entirely new "window" on the Universe, allowing scientists to unravel longstanding and important astronomical mysteries.

"Most of the photons in the Universe are in the wavelength range that ALMA will receive, and ALMA will give us our first high-resolution views at these wavelengths. This will be a tremendous advancement for astronomy and open one of our science's last frontiers," Anneila Sargent, a Caltech professor and ALMA Board member, told the American Association for the Advancement of Science at its meeting in Boston, Mass.

The millimeter and submillimeter wavelength range lies between what is traditionally considered radio waves and infrared waves. ALMA, a system using up to 66 high-precision dish antennas working together, will provide astronomers with dramatically greater sensitivity, the ability to detect faint objects, and resolving power, the ability to see fine detail, than has ever before been available in this range.

"This ambitious project is the product of an international collaboration that spans the globe," Sargent said. "ALMA truly will enable transformational science and providing this capability has required a massive, world-wide effort," she added.

The ALMA project is a partnership between Europe, Japan and North America in cooperation with the Republic of Chile. ALMA is funded in Europe by ESO, in Japan by the National Institutes of Natural Sciences in cooperation with the Academia Sinica in Taiwan and in North America by the U.S. National Science Foundation in cooperation with the National Research Council of Canada. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of Japan by the National Astronomical Observatory of Japan and on behalf of North America by the National Radio Astronomy Observatory, which is managed by Associated Universities, Inc.

While scores of people are working at the ALMA site in Chile, more are in laboratories, test facilities, and factories around the world developing and producing equipment destined for ALMA. Antennas are coming from Europe, North America, and Japan. The giant transporter machines that will allow the antennas to be moved into multiple configurations have arrived in Chile from Germany. The prototype antennas and the prototype electronic equipment for ALMA have been tested at the site of the Very Large Array radio telescope in New Mexico. In Chile, buildings, roads and the complex infrastructure required to support ALMA operations all are coming together.

Groundbreaking for ALMA was held in 2003, and the project is scheduled for completion in 2012.

Astronomers expect ALMA to make extremely important contributions in a a variety of scientific specialties. The new telescope system will be a premier tool for studying the first stars and galaxies that emerged from the cosmic "dark ages" billions of years ago. These objects now are seen at great cosmic distances, with most of their light stretched out to millimeter and submillimeter wavelengths by the expansion of the Universe.

In the more nearby Universe, ALMA will provide an unprecedented ability to study the processes of star and planet formation. Unimpeded by the dust that obscures visible-light observations, ALMA will be able to reveal the details of young, still-forming stars, and is expected to show young planets still in the process of developing. In addition, ALMA will allow scientists to learn in detail about the complex chemistry of the giant clouds of gas and dust that spawn stars and planetary systems.

Many other astronomical specialties also will benefit from the new capabilities of ALMA, In addition, "We know that every time in the past that a new wavelength region has been opened up, as ALMA will do, we have been surprised by entirely unexpected discoveries that significantly changed our understanding of the Universe. We also expect the unexpected from ALMA," Sargent said.

Dave Finley | EurekAlert!
Further information:
http://www.nrao.edu

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>