Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astonomers discover Jupiter-Saturn-like planet in distant solar system

15.02.2008
The simultaneous discovery of two exoplanets slightly smaller than Jupiter and Saturn by an international team of astronomers that includes University of Notre Dame research associate professor of astrophysics David Bennett gives astrophysicists an important clue that solar systems like ours might be quite common.

The report, to be published in the Feb. 15 issue of the journal Science, describes the series of observations that began March 28, 2006, when a collaboration known as Optical Gravitational Microlensing Equipment (OGLE) detected a signal, possibly due to a planet in microlensing event OGLE-2006-BLG-109, that the researchers had discovered and announced two days earlier.

After the OGLE group announced this possible detection of a planetary system via e-mail, other astronomers from the Microlensing Follow-Up Network (MicroFUN), Microlensing Observations in Astrophysics (MOA) and Probing Lensing Anomalies NETwork (PLANET) collaborations also began intensive, round-the-clock observations of this event. The combined data from these four groups revealed a series of brightness variations over the ensuing 11 days that indicated that two planets orbit a star half the mass of the sun located 5,000 light years from Earth. This star, called OGLE-2006-BLG-109L, and its planets were discovered using a technique known as gravitational microlensing.

Early calculations by the report’s lead author, Scott Gaudi of Ohio State University, and the MicroFUN group indicated that most of the telltale brightness variations were due to a planet with a mass similar to that of Saturn, but that there was a brief additional brightening observed from Israel and Chile that could only be explained by an additional planet with nearly the mass of Jupiter. However, Gaudi’s calculations did not provide a perfect fit to the data and involved several approximations.

Subsequently, Bennett performed more sophisticated calculations in his office at Notre Dame using his own advanced computer program that included an important additional feature: the orbital motion of the Saturn-mass planet.

“Even though we observed the micolensing effect of the Saturn for less than 0.3 percent of its orbit, the observations simply could not be explained without accounting for the orbit,” Bennett said.

Critical assistance with these calculations was provided by Sergei Nikolaev at Lawrence Livermore National Laboratory, who devoted much supercomputer time to the calculations.

The result was one of the most complicated calculations of a star-planet system using the gravitational microlensing method.

Gravitational microlensing takes advantage of the fact that light is bent as the rays pass close to a massive object, like a star. The gravity from the mass of the intervening object, or lens star, warps surrounding space and acts like a giant magnifying glass. As predicted by Albert Einstein and later confirmed, this phenomena causes an apparent brightening of the light from the background “source” star. The effect is seen only if the astronomer’s telescope lies in almost perfect alignment with the source star and the lens star. Astronomers are then able to detect planets orbiting the lens star if the light from the background star also is warped by the planets.

The discovery of the double planet system was a triumph for astronomers who use this method, which is of such high sensitivity that it can detect planets similar to those in our own solar system, with the exception of Mercury.

“These planets could not have been detected without any other technique,” Bennett said.

“The light curve of this event revealed an unprecedented amount of information about the planetary host star and the planets,” he continued.

The effect of the orbital motion of the Earth can be detected in the light curve, and this reveals that the mass of the host star is half the mass of the sun. This mass estimate was confirmed by subsequent observations of the planetary host star with the Keck telescope.

The light curve also reveals the orbital motion of the Saturn-mass planet during the 11 days when the planetary signal was visible.

To date, only 25 multiple planet systems have been observed. A majority are very dissimilar to our solar system and that of OGLE-2006-BLG-109L.

The Jupiter- and Saturn-sized planets orbiting OGLE-2006-BLG-109L are only the fifth and sixth planets that have been detected using the gravitational lensing method. Gaudi and Bennett conclude that if the OGLE-2006-BLG-109L planetary system is typical, then it is possible that they would have similar planets as our own solar system.

William Gilroy | EurekAlert!
Further information:
http://www.nd.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>