Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astonomers discover Jupiter-Saturn-like planet in distant solar system

15.02.2008
The simultaneous discovery of two exoplanets slightly smaller than Jupiter and Saturn by an international team of astronomers that includes University of Notre Dame research associate professor of astrophysics David Bennett gives astrophysicists an important clue that solar systems like ours might be quite common.

The report, to be published in the Feb. 15 issue of the journal Science, describes the series of observations that began March 28, 2006, when a collaboration known as Optical Gravitational Microlensing Equipment (OGLE) detected a signal, possibly due to a planet in microlensing event OGLE-2006-BLG-109, that the researchers had discovered and announced two days earlier.

After the OGLE group announced this possible detection of a planetary system via e-mail, other astronomers from the Microlensing Follow-Up Network (MicroFUN), Microlensing Observations in Astrophysics (MOA) and Probing Lensing Anomalies NETwork (PLANET) collaborations also began intensive, round-the-clock observations of this event. The combined data from these four groups revealed a series of brightness variations over the ensuing 11 days that indicated that two planets orbit a star half the mass of the sun located 5,000 light years from Earth. This star, called OGLE-2006-BLG-109L, and its planets were discovered using a technique known as gravitational microlensing.

Early calculations by the report’s lead author, Scott Gaudi of Ohio State University, and the MicroFUN group indicated that most of the telltale brightness variations were due to a planet with a mass similar to that of Saturn, but that there was a brief additional brightening observed from Israel and Chile that could only be explained by an additional planet with nearly the mass of Jupiter. However, Gaudi’s calculations did not provide a perfect fit to the data and involved several approximations.

Subsequently, Bennett performed more sophisticated calculations in his office at Notre Dame using his own advanced computer program that included an important additional feature: the orbital motion of the Saturn-mass planet.

“Even though we observed the micolensing effect of the Saturn for less than 0.3 percent of its orbit, the observations simply could not be explained without accounting for the orbit,” Bennett said.

Critical assistance with these calculations was provided by Sergei Nikolaev at Lawrence Livermore National Laboratory, who devoted much supercomputer time to the calculations.

The result was one of the most complicated calculations of a star-planet system using the gravitational microlensing method.

Gravitational microlensing takes advantage of the fact that light is bent as the rays pass close to a massive object, like a star. The gravity from the mass of the intervening object, or lens star, warps surrounding space and acts like a giant magnifying glass. As predicted by Albert Einstein and later confirmed, this phenomena causes an apparent brightening of the light from the background “source” star. The effect is seen only if the astronomer’s telescope lies in almost perfect alignment with the source star and the lens star. Astronomers are then able to detect planets orbiting the lens star if the light from the background star also is warped by the planets.

The discovery of the double planet system was a triumph for astronomers who use this method, which is of such high sensitivity that it can detect planets similar to those in our own solar system, with the exception of Mercury.

“These planets could not have been detected without any other technique,” Bennett said.

“The light curve of this event revealed an unprecedented amount of information about the planetary host star and the planets,” he continued.

The effect of the orbital motion of the Earth can be detected in the light curve, and this reveals that the mass of the host star is half the mass of the sun. This mass estimate was confirmed by subsequent observations of the planetary host star with the Keck telescope.

The light curve also reveals the orbital motion of the Saturn-mass planet during the 11 days when the planetary signal was visible.

To date, only 25 multiple planet systems have been observed. A majority are very dissimilar to our solar system and that of OGLE-2006-BLG-109L.

The Jupiter- and Saturn-sized planets orbiting OGLE-2006-BLG-109L are only the fifth and sixth planets that have been detected using the gravitational lensing method. Gaudi and Bennett conclude that if the OGLE-2006-BLG-109L planetary system is typical, then it is possible that they would have similar planets as our own solar system.

William Gilroy | EurekAlert!
Further information:
http://www.nd.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>