Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery by University of Reading scientists paves way for development of better medical implants

15.02.2008
Scientists from the University of Reading have discovered that proteins stick, slide and cluster on solid surfaces. The way in which proteins cluster on a surface affects their activity and the findings from this research will help to develop new materials for use in medical and dental implants.

Proteins are molecules which play a central role in biological processes, and form the basis of all living tissues. When a foreign material, such as a medical implant, is put into a living organism, then a layer of protein molecules will start to attach and grow on it. By using experiments and theories which have been developed to understand this growth, the researchers have identified the key steps which are important for proteins to form this layer.

The research shows that proteins first stick to a surface then they slide around until they meet each other and join together to form clusters. These clusters are also able to slide around, although not as quickly, and can then stick together to create even bigger clusters. This movement results in a surface which is covered in isolated islands of protein molecules separated by large areas of bare surface.

For medical and dental implants, knowledge about the arrangement of protein molecules on a surface is important, because it is these molecules which interact directly with the surrounding tissue. The way in which proteins initially attach to a surface influences how cells then grow and this has implications for the integration or rejection of any implanted material. If proteins were fixed at the first point of attachment, then this would create a very different surface distribution with different properties.

Dr Roger Bennett, from the Departments of Chemistry and Physics, said “Our work into the ways in which proteins attach and cluster on solid surfaces will help to develop better biocompatible materials for use in implants. In contrast to previous ideas, which were based on simple models, our experiments and modelling show the actual behaviour of proteins. Our research has investigated how proteins attach to surfaces by mimicking the immersion of artificial materials, such as medical and dental implants, in biological solutions, for example blood or saliva, then visualising the results by using a technique known as Atomic Force Microscopy.”

Lucy Chappell | alfa
Further information:
http://www.reading.ac.uk/cfam/
http://www.nano.reading.ac.uk/

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>