Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars Odyssey’s Measurements Reveal a Wet, Red Planet

29.05.2002


Dry valleys, channels, and networks of gullies scar the arid Martian landscape. Along with other evidence, these physical vestiges of conditions on ancient Mars suggest a planet once saturated with liquid water. Where is this water now? Scientists have posited that a portion of it evaporated into the atmosphere, but that the rest lies beneath the surface. Findings announced today offer the strongest support yet to that hypothesis: according to new data, large deposits of water ice may in fact exist under just tens of centimeters of soil on the Red Planet.



Researchers used a gamma-ray spectrometer on board the Mars Odyssey spacecraft to map the emissions of gamma rays and neutrons from the Martian surface. Interactions between elements and cosmic rays, which constantly bombard all planets, produce these gamma rays and neutrons. Specifically, when a cosmic ray strikes an element, neutrons are released. These neutrons may either escape the planet’s surface or excite the nuclei of surrounding elements, which respond by emitting gamma rays. Each element emits a unique combination of gamma rays and neutrons, and thus has a distinctive fingerprint. In three papers released yesterday by the journal Science, investigators reported having found evidence for a high concentration of the element hydrogen, an indicator of water. The results suggest that an immense quantity of water exists within the nooks and crannies of a rocky, porous layer of soil some 30 to 60 centimeters beneath Mars’s surface. Stretching from the edges of the polar ice caps to the middle latitudes, the thickness of the ice layer is difficult to determine--it may be anywhere from a few hundred centimeters to a kilometer deep.

If confirmed, the locations of such water ice deposits could determine future landing sites for rovers, locations of sample returns, and perhaps even placements of human settlements. "We have suspected for some time that Mars once had large amounts of water near the surface. The big questions we are trying to answer are, ’where did all that water go?’ and ’what are the implications for life?’" remarks Jim Garvin, Mars Program Scientist at NASA headquarters in Washington, D.C. "Measuring and mapping the icy soils in the polar regions of Mars as the Odyssey team has done is an important piece of this puzzle, but we need to continue searching, perhaps much deeper underground, for what happened to the rest of the water we think Mars once had."

Rachael Moeller | Scientific American

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>