Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars Odyssey’s Measurements Reveal a Wet, Red Planet

29.05.2002


Dry valleys, channels, and networks of gullies scar the arid Martian landscape. Along with other evidence, these physical vestiges of conditions on ancient Mars suggest a planet once saturated with liquid water. Where is this water now? Scientists have posited that a portion of it evaporated into the atmosphere, but that the rest lies beneath the surface. Findings announced today offer the strongest support yet to that hypothesis: according to new data, large deposits of water ice may in fact exist under just tens of centimeters of soil on the Red Planet.



Researchers used a gamma-ray spectrometer on board the Mars Odyssey spacecraft to map the emissions of gamma rays and neutrons from the Martian surface. Interactions between elements and cosmic rays, which constantly bombard all planets, produce these gamma rays and neutrons. Specifically, when a cosmic ray strikes an element, neutrons are released. These neutrons may either escape the planet’s surface or excite the nuclei of surrounding elements, which respond by emitting gamma rays. Each element emits a unique combination of gamma rays and neutrons, and thus has a distinctive fingerprint. In three papers released yesterday by the journal Science, investigators reported having found evidence for a high concentration of the element hydrogen, an indicator of water. The results suggest that an immense quantity of water exists within the nooks and crannies of a rocky, porous layer of soil some 30 to 60 centimeters beneath Mars’s surface. Stretching from the edges of the polar ice caps to the middle latitudes, the thickness of the ice layer is difficult to determine--it may be anywhere from a few hundred centimeters to a kilometer deep.

If confirmed, the locations of such water ice deposits could determine future landing sites for rovers, locations of sample returns, and perhaps even placements of human settlements. "We have suspected for some time that Mars once had large amounts of water near the surface. The big questions we are trying to answer are, ’where did all that water go?’ and ’what are the implications for life?’" remarks Jim Garvin, Mars Program Scientist at NASA headquarters in Washington, D.C. "Measuring and mapping the icy soils in the polar regions of Mars as the Odyssey team has done is an important piece of this puzzle, but we need to continue searching, perhaps much deeper underground, for what happened to the rest of the water we think Mars once had."

Rachael Moeller | Scientific American

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>