Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mars Odyssey’s Measurements Reveal a Wet, Red Planet


Dry valleys, channels, and networks of gullies scar the arid Martian landscape. Along with other evidence, these physical vestiges of conditions on ancient Mars suggest a planet once saturated with liquid water. Where is this water now? Scientists have posited that a portion of it evaporated into the atmosphere, but that the rest lies beneath the surface. Findings announced today offer the strongest support yet to that hypothesis: according to new data, large deposits of water ice may in fact exist under just tens of centimeters of soil on the Red Planet.

Researchers used a gamma-ray spectrometer on board the Mars Odyssey spacecraft to map the emissions of gamma rays and neutrons from the Martian surface. Interactions between elements and cosmic rays, which constantly bombard all planets, produce these gamma rays and neutrons. Specifically, when a cosmic ray strikes an element, neutrons are released. These neutrons may either escape the planet’s surface or excite the nuclei of surrounding elements, which respond by emitting gamma rays. Each element emits a unique combination of gamma rays and neutrons, and thus has a distinctive fingerprint. In three papers released yesterday by the journal Science, investigators reported having found evidence for a high concentration of the element hydrogen, an indicator of water. The results suggest that an immense quantity of water exists within the nooks and crannies of a rocky, porous layer of soil some 30 to 60 centimeters beneath Mars’s surface. Stretching from the edges of the polar ice caps to the middle latitudes, the thickness of the ice layer is difficult to determine--it may be anywhere from a few hundred centimeters to a kilometer deep.

If confirmed, the locations of such water ice deposits could determine future landing sites for rovers, locations of sample returns, and perhaps even placements of human settlements. "We have suspected for some time that Mars once had large amounts of water near the surface. The big questions we are trying to answer are, ’where did all that water go?’ and ’what are the implications for life?’" remarks Jim Garvin, Mars Program Scientist at NASA headquarters in Washington, D.C. "Measuring and mapping the icy soils in the polar regions of Mars as the Odyssey team has done is an important piece of this puzzle, but we need to continue searching, perhaps much deeper underground, for what happened to the rest of the water we think Mars once had."

Rachael Moeller | Scientific American

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>