Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists propose test of string theory based on neutral hydrogen absorption

30.01.2008
Ancient light absorbed by neutral hydrogen atoms could be used to test certain predictions of string theory, say cosmologists at the University of Illinois. Making the measurements, however, would require a gigantic array of radio telescopes to be built on Earth, in space or on the moon.

String theory – a theory whose fundamental building blocks are tiny one-dimensional filaments called strings – is the leading contender for a “theory of everything.” Such a theory would unify all four fundamental forces of nature (the strong and weak nuclear forces, electromagnetism, and gravity). But finding ways to test string theory has been difficult.

Now, cosmologists at the U. of I. say absorption features in the 21-centimeter spectrum of neutral hydrogen atoms could be used for such a test.

“High-redshift, 21-centimeter observations provide a rare observational window in which to test string theory, constrain its parameters and show whether or not it makes sense to embed a type of inflation – called brane inflation – into string theory,” said Benjamin Wandelt, a professor of physics and of astronomy at the U. of I.

“If we embed brane inflation into string theory, a network of cosmic strings is predicted to form,” Wandelt said. “We can test this prediction by looking for the impact this cosmic string network would have on the density of neutral hydrogen in the universe.”

Wandelt and graduate student Rishi Khatri describe their proposed test in a paper accepted for publication in the journal Physical Review Letters.

About 400,000 years after the Big Bang, the universe consisted of a thick shell of neutral hydrogen atoms (each composed of a single proton orbited by a single electron) illuminated by what became known as the cosmic microwave background.

Because neutral hydrogen atoms readily absorb electromagnetic radiation with a wavelength of 21 centimeters, the cosmic microwave background carries a signature of density perturbations in the hydrogen shell, which should be observable today, Wandelt said.

Cosmic strings are filaments of infinite length. Their composition can be loosely compared to the boundaries of ice crystals in frozen water.

When water in a bowl begins to freeze, ice crystals will grow at different points in the bowl, with random orientations. When the ice crystals meet, they usually will not be aligned to one another. The boundary between two such misaligned crystals is called a discontinuity or a defect.

Cosmic strings are defects in space. A network of strings is predicted by string theory (and also by other supersymmetric theories known as Grand Unified Theories, which aspire to unify all known forces of nature except gravity) to have been produced in the early universe, but has not been detected so far. Cosmic strings produce characteristic fluctuations in the gas density through which they move, a signature of which will be imprinted on the 21-centimeter radiation.

The cosmic string network predicted to occur with brane inflation could be tested by looking for the corresponding fluctuations in the 21-centimeter radiation.

Like the cosmic microwave background, the cosmological 21-centimeter radiation has been stretched as the universe has expanded. Today, this relic radiation has a wavelength closer to 21 meters, putting it in the long-wavelength radio portion of the electromagnetic spectrum.

To precisely measure perturbations in the spectra would require an array of radio telescopes with a collective area of more than 1,000 square kilometers. Such an array could be built using current technology, Wandelt said, but would be prohibitively expensive.

If such an enormous array were eventually constructed, measurements of perturbations in the density of neutral hydrogen atoms could also reveal the value of string tension, a fundamental parameter in string theory, Wandelt said. “And that would tell us about the energy scale at which quantum gravity begins to become important.”

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>