Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lift off for Eddington Mission to look inside the stars and search for planets like Earth

28.05.2002


"It is not too much to hope that in the not too distant future we shall be competent to understand so simple a thing as a star" (Arthur Eddington 1926)



Following a press conference this morning (Monday 27 May 2002) in Paris, the European Space Agency confirmed the establishment of the Eddington Mission as part of its new Science programme. Astronomers, led by Professor Ian Roxburgh of Queen Mary, University of London, proposed the mission in 2000, and the Eddington Satellite is to be launched in 2007/8.

Named after the British astronomer, Sir Arthur Stanley Eddington, who laid the foundations for our understanding of how stars work, the Eddington Mission aims to answer the question Eddington asked himself in 1926:


"What appliance can pierce through the outer layers of a star and test the conditions within." (AS Eddington, Internal Constitution of the Stars, 1926). Almost eighty years later, we have the answer.

The Eddington satellite (consisting of four telescopes) will gaze at different regions of the sky for intervals of about two months each, observing over 200,000 stars, measuring changes in light of one part of one million, and thus allowing astronomers to work out what stars are like inside (asteroseismology). Asteroseismology is the appliance Sir Arthur Stanley Eddington sought. This will enable astronomers to understand how stars work and to use this knowledge to measure the age of stars and components of our galaxy, and to understand how elements were formed.

The Mission will then search for Earth-like planets orbiting other stars, pointing continuously at one region of the sky for three years, measuring light from over 100,000 stars and detecting the tiny decrease in light as a planet passes in front of the star. In addition the Eddington Mission will discover many larger planets and give astronomers the information to understand how the solar system was found.

Professor Ian Roxburgh, Science Co-ordinator of the Mission, said:

"The approval of the Eddington Mission is great news. I am very, very happy! I first started working on such a mission in 1982, and this is the culmination of a lot of work by a lot of scientists. At last we will be able to find planets like the Earth around other stars and to understand how stars work and how they change as they get older. Discovering the existence of planets like the Earth, with properties similar to those on Earth, is a first step towards searching for signs of life elsewhere in the Universe."

Over fifty research groups around Europe are involved in the Eddington Mission, including eight from the UK. Ian Roxburgh, Keith Horne (University of St Andrews) and Gerry Gilmore (University of Cambridge) are part of the Eddington Science Team that has been developing the Mission. It is under the overall direction of the European Space Agency Study Scientist Fabio Favata.

Kate Hunter | alphagalileo
Further information:
http://www.qmul.ac.uk

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>