Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HiRISE Camera Details Dynamic Wind Action on Mars

24.01.2008
Mars has an ethereal, tenuous atmosphere at less than 1 percent the surface pressure of Earth, so scientists working on The University of Arizona's High Resolution Imaging Experiment, or HiRISE, are challenged to explain the complex, wind-sculpted landforms they're now seeing in unprecedented detail.

The HiRISE camera on NASA's Mars Reconnaissance Orbiter, the most powerful camera to orbit another planet, can see 20-inch-diameter features while flying at about 7,500 mph between 155 and 196 miles above the Martian surface. HiRISE is giving researchers eye-opening new views of wind-driven Mars geology.

One of the main questions has been if winds on present-day Mars are strong enough to form and change geological features, or if wind-constructed formations were made in the past, perhaps when winds speeds and atmospheric pressures were higher, HiRISE team members say.

"We're seeing what look like smaller sand bedforms on the tops of larger dunes, and, when we zoom in more, a third set of bedforms topping those,"

HiRISE co-investigator Nathan Bridges of the Jet Propulsion Laboratory in Pasadena, Calif., said. "On Earth, small bedforms can form and change on time scales as short as a day."

There are two kinds of "bedforms," or wind-deposited landforms. They can be sand dunes, which are typically larger and have distinct shapes. Or they can be ripples, which is sand mixed with coarser, millimeter-sized particles.

Ripples are typically smaller, more linear structures.

HiRISE also shows detail in sediments deposited by winds on the lee side of rocks. Such rock "windtails" show which way the most current winds have blown, Bridges said. Such features have been seen before, but only by rovers and landers, never an orbiting camera. Researchers can now use HiRISE images to infer wind directions over the entire planet.

Scientists discovered miles-long, wind-scoured ridges called "yardangs" with the first Mars orbiter, Mariner 9, in the early 1970s, Bridges said. New HiRISE images reveal surface texture and fine-scale features that are giving scientists insight on how yardangs form.

"HiRISE is showing us just how interesting layers in yardangs are," Bridges said. "For example, we see one layer that appears to have rocks in it. You can actually see rocks in the layer, and if you look downslope, you can see rocks that we think have eroded out from that rocky layer above."

HiRISE shows that some layers in the yardangs are made of softer materials that have been modified by wind, he added. The soft material could be volcanic ash deposits, or the dried up remnants of what once were mixtures of ice and dust, or something else.

"The fact that we see layers that appear to be rocky and layers that are obviously soft says that the process that formed yardangs is no simple process but a complicated sequence of processes," Bridges said.

Scientists since the 1970s Viking missions have puzzled over what appears to be dust covering Mars' 6-to-13-mile-high volcanoes. Near the volcanic summits, the air is about one one-thousandth of Earth's atmospheric pressure.

"HiRISE keeps showing interesting things about terrains that I expected to be uninteresting," said HiRISE principal investigator Alfred McEwen of the UA's Lunar and Planetary Laboratory. "I was surprised by the diversity of morphology of the thick dust mantles. Instead of a uniform blanket of smooth dust, there are often intricate patterns due to the action of the wind and perhaps light cementation from atmospheric volatiles."

HiRISE images show that what covers the slopes of the high Martian volcanoes are definitely dunes or ripples that appear to have an organized 'reticulate' structure possibly formed by winds blowing from multiple directions, Bridges said.

"On Earth, winds blowing from many different directions form what are called 'star dunes,' and these look somewhat like those," Bridges said. "The reticulate surface looks like a network of connected wind-blown dunes and ripples.

"The fact that the air pressure near the volcano tops is so low and the material is dust challenges us to understand what these features are," he said. "Perhaps the dust is clumping together and making sand-size material.

But how this stuff can be blown around this low pressure is at the edge of our understanding of aeolian physics.

"Possibly the bedforms on the volcanoes formed under a different Martian climate in the past, when atmospheric density was greater," Bridges said.

"But I'm not sure that's the case, because you can see evidence that a lot of the mantle appears to be fairly recent."

HiRISE team member Paul Geissler of the U.S. Geological Survey, in Flagstaff, Ariz., has discovered from HiRISE images that dark streaks coming from Victoria Crater are probably streaks of dark sand blown out from the crater onto the surface. Scientists had wondered if wind might have blown away lighter-colored surface material, exposing a darker underlying surface.

Geissler, a member of the Mars Exploration Rover team, is comparing HiRISE images with images the Opportunity rover has taken at Victoria Crater.

Bridges is lead author on the paper titled "Windy Mars: A dynamic planet as seen by the HiRISE camera" in the Geophysical Research letters in December.

McEwen is among the paper's co-authors.

Information about the Mars Reconnaissance Orbiter spacecraft is online at http://www.nasa.gov/mro. The mission is managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, for the NASA Science Mission Directorate. Lockheed Martin Space Systems, based in Denver, is the prime contractor and built the spacecraft. Ball Aerospace and Technologies Corp., of Boulder, Colo., built the HiRISE camera operated by the UA.

CONTACT: Nathan Bridges (818-393-7799; nathan.bridges@jpl.nasa.gov) Alfred McEwen (520-621-4573; mcewen@pirl.lpl.arizona.edu)

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu
http://www.nasa.gov/mro

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>