Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find record-old cosmic explosion

11.01.2008
Oldest known short gamma ray burst occurred halfway back to Big Bang

Using the powerful one-two combo of NASA’s Swift satellite and the Gemini Observatory, astronomers from a number of institutions, including Johns Hopkins, have detected a mysterious type of cosmic explosion farther back in time than ever before.

The explosion, known as a short gamma-ray burst (GRB), took place 7.4 billion years ago, more than halfway back to the Big Bang.

"This discovery dramatically moves back the time at which we know short GRBs were exploding. The short burst is almost twice as far as the previous confirmed record holder," says John Graham, a graduate student in the Henry A. Rowland Department of Physics and Astronomy at The Johns Hopkins University. Graham is presenting his group’s discovery at the American Astronomical Society’s 2008 winter meeting this week in Austin, Texas.

GRBs are among the most powerful explosions in the universe, releasing enormous amounts of energy in the form of X-rays and gamma rays. Most bursts fall in one of two categories: long bursts and short bursts, depending on whether they last more or less than three seconds. Astronomers believe that long GRBs are triggered by the collapse and explosion of massive stars. In contrast, a variety of mechanisms has been proposed for short bursts. The most popular model says that most short GRBs occur when two neutron stars smash into each other and collapse into a black hole, ejecting energy in two counter-flowing beams.

The record-setting short burst is known as GRB 070714B, named because it was the second GRB detected on July 14, 2007. NASA’s Swift Gamma-Ray Burst Mission discovered the GRB in the constellation Taurus. Rapid follow-up observations with the 2-meter Liverpool Telescope and the 4-meter William Herschel Telescope found an optical afterglow in the same location as the burst, which allowed astronomers to identify the GRB’s host galaxy.

Next, Graham and his colleagues, Andrew Fruchter of the Space Telescope Science Institute and Andrew Levan of the University of Warwick in the United Kingdon, trained the 8-meter Gemini North Telescope in Hawaii on the galaxy. Analysis of a spectrum of the light from that galaxy indicated that it is 7.4 billion light-years away, meaning the explosion occurred 7.4 billion years ago.

"The fact that this short burst is so far away means this subclass has a broad range of distances, although they still tend to be closer on average than long GRBs," says Swift lead scientist Neil Gehrels of NASA’s Goddard Space Flight Center in Greenbelt, Md.

Gehrels adds that GRB 070714B’s energy was about 100 times higher than average for short bursts, more similar to the typical energy of a long GRB.

"It is unclear whether another mechanism is needed to explain this explosion, such as a neutron star-black hole merger," Gehrels said. "Or it could be that there are a wide range of energies for neutron star-neutron star mergers, but that seems unlikely."

Another possibility is that GRB 070714B concentrated its energy in two very narrow beams and that one of the beams happened to be aimed directly at Earth, making the burst seem more powerful than it really was. Researchers wonder if most short GRBs eject their energy in wider, less concentrated beams.

"We now have a good idea of the type of star that produces the brighter long bursts. But how short bursts are formed remains a mystery," Fruchter said.

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>