Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find record-old cosmic explosion

11.01.2008
Oldest known short gamma ray burst occurred halfway back to Big Bang

Using the powerful one-two combo of NASA’s Swift satellite and the Gemini Observatory, astronomers from a number of institutions, including Johns Hopkins, have detected a mysterious type of cosmic explosion farther back in time than ever before.

The explosion, known as a short gamma-ray burst (GRB), took place 7.4 billion years ago, more than halfway back to the Big Bang.

"This discovery dramatically moves back the time at which we know short GRBs were exploding. The short burst is almost twice as far as the previous confirmed record holder," says John Graham, a graduate student in the Henry A. Rowland Department of Physics and Astronomy at The Johns Hopkins University. Graham is presenting his group’s discovery at the American Astronomical Society’s 2008 winter meeting this week in Austin, Texas.

GRBs are among the most powerful explosions in the universe, releasing enormous amounts of energy in the form of X-rays and gamma rays. Most bursts fall in one of two categories: long bursts and short bursts, depending on whether they last more or less than three seconds. Astronomers believe that long GRBs are triggered by the collapse and explosion of massive stars. In contrast, a variety of mechanisms has been proposed for short bursts. The most popular model says that most short GRBs occur when two neutron stars smash into each other and collapse into a black hole, ejecting energy in two counter-flowing beams.

The record-setting short burst is known as GRB 070714B, named because it was the second GRB detected on July 14, 2007. NASA’s Swift Gamma-Ray Burst Mission discovered the GRB in the constellation Taurus. Rapid follow-up observations with the 2-meter Liverpool Telescope and the 4-meter William Herschel Telescope found an optical afterglow in the same location as the burst, which allowed astronomers to identify the GRB’s host galaxy.

Next, Graham and his colleagues, Andrew Fruchter of the Space Telescope Science Institute and Andrew Levan of the University of Warwick in the United Kingdon, trained the 8-meter Gemini North Telescope in Hawaii on the galaxy. Analysis of a spectrum of the light from that galaxy indicated that it is 7.4 billion light-years away, meaning the explosion occurred 7.4 billion years ago.

"The fact that this short burst is so far away means this subclass has a broad range of distances, although they still tend to be closer on average than long GRBs," says Swift lead scientist Neil Gehrels of NASA’s Goddard Space Flight Center in Greenbelt, Md.

Gehrels adds that GRB 070714B’s energy was about 100 times higher than average for short bursts, more similar to the typical energy of a long GRB.

"It is unclear whether another mechanism is needed to explain this explosion, such as a neutron star-black hole merger," Gehrels said. "Or it could be that there are a wide range of energies for neutron star-neutron star mergers, but that seems unlikely."

Another possibility is that GRB 070714B concentrated its energy in two very narrow beams and that one of the beams happened to be aimed directly at Earth, making the burst seem more powerful than it really was. Researchers wonder if most short GRBs eject their energy in wider, less concentrated beams.

"We now have a good idea of the type of star that produces the brighter long bursts. But how short bursts are formed remains a mystery," Fruchter said.

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>