Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The leading ‘edge’: plastic fibre slashes network costs

10.01.2008
Plans in the 1990s to bring ultra-high speed telecom lines into every home foundered because the optical fibre infrastructure was just too expensive. But a new European project using plastic fibre and off-the-shelf components could make optical networking so cheap and simple that anyone could install it.

What happened to the dream of optical fibre in every home? While the core of the telecoms network, the long-distance trunk routes, use optical fibre, the links from the exchange to individual homes remain almost entirely copper wire. Telecoms companies have been creative in pushing copper to its limit with ADSL broadband technology and leveraging existing TV cable infrastructure (especially France and the Benelux), but only by taking optical fibre right into the home can they meet the demands for ever-faster connections.

The truth is, it’s too expensive. Ambitious plans to rip out the copper and lay optical fibre were largely abandoned in 2001 when telecoms companies realised that they could not afford the mounting costs. Only a few countries, notably Japan, have pushed ahead on any scale.

“The cost was way too high to be sustainable,” says Alessandro Nocivelli, the founder and CEO of Luceat SpA, one of the partners in the EU-funded POF-ALL project. “There was no business model to support such an investment.”

The object of POF-ALL is to find a technical solution to this rising cost. The partners decided to focus on the cabling inside buildings, which would typically account for 30% of the cost of laying an optical fibre from the exchange into the home. This last hundred metres or so is known as the ‘edge’ network.

“We realised that we could lower the cost of this edge installation by using a simpler technology,” says Nocivelli. “If we could employ a technology which is so simple to use that anyone can install it, that would relieve telecom companies of 30% of the cost of the access network, which means up to several billion euro if you consider the European Union as a whole.”

Safety concerns
The key to a simpler, cheaper edge network is optical fibre made of plastic rather than the more usual glass. It has several advantages. First of all, glass fibres use infrared laser light to transmit the signal. The light is invisible to the eye yet can cause permanent damage or even blindness if someone looks down a live fibre.

“I have a two-year-old child,” says Nocivelli, “and I would never install a glass optical fibre in my own home, even though I have been working with glass optical fibres for many years.” In contrast, plastic fibres use harmless green or red light that is easily visible to the eye. Plastic fibres can be safely installed in a home without risk to inquisitive children.

A second advantage is their robustness. Plastic fibres are much thicker than glass fibres, a millimetre or more, and can be handled without special tools or techniques. “You don’t need to be trained to handle and install it. You just cut it with scissors, plug it in and it works. It’s as easy as that.”

Of course there are drawbacks. Plastic fibres absorb light more than glass, which limits their useful length to a few hundred metres. They also have a lower data capacity than glass fibres. But that is fine for the cable that runs from a conventional glass fibre in the street into a house, or even for laying a network within a block of flats.

With six months of the project to run, POF-ALL is already producing results. The partners have built a system that uses green light to transmit 100 megabits a second over a distance of 300 metres, which is the speed telecom companies hope to offer their customers five to ten years from now, and 50 times as fast as a typical adsl broadband connection.

Future-proof for 30 years
The second achievement, using red light, is to transmit ten times faster still – one gigabit per second – over a 30m fibre. By the end of the project, in June 2008, they expect to have extended that to 100m.

“Then, of course, we will try to focus on longer distances,” says Nocivelli. “We have already demonstrated that plastic fibre would be future-proof not only for the next ten years but for the next 30 years. With that speed in your home you could download a full DVD in thirty seconds.”

Remarkably, the POF-ALL members have not had to develop any novel technologies. They have built their systems using the latest off-the-shelf components and the ingenuity and skill of the ten academic and industrial partners.

Two products are already coming to the market. Luceat is commercialising an optical Ethernet switch (a router) using plastic fibre technology and the Fraunhofer Institute is looking for partners to market an integrated optical transceiver to work at one gigabit a second with plastic fibre.

Home and office networks could be rewired with plastic optical fibre so simply and cheaply it could be a do-it-yourself job.“It’s future-proof,” confirms Nocivelli. You run at 100 Mbit/s today, 1 Gbit/s tomorrow and maybe 10 Gbit/s in the future.”

A follow-up project, POF-PLUS, is intended to further develop optoelectronic components for plastic fibre and is awaiting a final decision on EU funding.

The benefits for Europe of plastic optical fibre could be immense. Today, the market for optical network technology is dominated by US and Japanese firms, but Nocivelli sees an opportunity for European companies to seize the initiative in the same way as they did for mobile phones.

“The GSM standard, which was developed in Europe, has been adopted almost worldwide. And, of course, this is the kind of success we are looking forward to.”

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89422

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>