Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Red dust in planet-forming disk may harbor precursors to life

Astronomers at the Carnegie Institution have found the first indications of highly complex organic molecules in the disk of red dust surrounding a distant star. The eight-million-year-old star, known as HR 4796A, is inferred to be in the late stages of planet formation, suggesting that the basic building blocks of life may be common in planetary systems.

In a study published in the current Astrophysical Journal Letters, John Debes and Alycia Weinberger of the Carnegie Institution’s Department of Terrestrial Magnetism with Glenn Schneider of the University of Arizona report observations of infrared light from HR 4796A using the Near-Infrared Multi-Object Spectrometer aboard the Hubble Space Telescope.

The researchers found that the spectrum of visible and infrared light scattered by the star’s dust disk looks very red, the color produced by large organic carbon molecules called tholins. The spectrum does not match those of other red substances, such as iron oxide.

Tholins do not form naturally on present-day Earth because oxygen in the atmosphere would quickly destroy them, but they are hypothesized to have existed on the primitive Earth billions of years ago and may have been precursors to the biomolecules that make up living organisms. Tholins have been detected elsewhere in the solar system, such as in comets and on Saturn’s moon Titan, where they give the atmosphere a red tinge. This study is the first report of tholins outside the solar system.

“Until recently it’s been hard to know what makes up the dust in a disk from scattered light, so to find tholins this way represents a great leap in our understanding,” says Debes.

HR 4796A is located in the constellation Centaurus, visible primarily form the southern hemisphere. It is about 220 light years from Earth. The discovery of its dust disk in 1991generated excitement among astronomers, who consider it a prime example of a planetary system caught in the act of formation. The dust is generated by collisions of small bodies, perhaps similar to the comets or asteroids in our solar system, and which may be coated by the organics. These planetesimals can deliver these building blocks for life to any planets that may also be circling the star.

“Astronomers are just beginning to look for planets around stars much different from the Sun. HR 4796A is twice as massive, nearly twice as hot as the sun, and twenty times more luminous than the Sun,” says Debes. “Studying this system provides new clues to understanding the different conditions under which planets form and, perhaps, life can evolve."

John Debes | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>