Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space telescope unveils hidden cosmic giant

14.12.2007
Astronomers from SRON Netherlands Institute for Space Research have discovered a new cluster of galaxies, hidden behind a previously identified cluster of galaxies. The recently exposed cosmic giant is apparently just as bright as the first group, but is six times further away. The astronomers made the discovery as part of an international team using the space telescope XMM-Newton.

Being fooled by a cosmic giant is no laughing matter for an astronomer. For years astronomers racked their brains over the relation between two in X-rays equally bright and large regions in the cluster of galaxies known as Abell 3128. ‘That is the charm of science’, says Norbert Werner, PhD student at SRON. ’You are always finding things that you did not expect.’

Clusters of galaxies are the largest structures in the universe. They consist of tens to hundreds of massive galaxies, of which each in turn consists of hundreds of billions of stars. Gravity is the binding factor. The hot gas of tens of millions degrees Celsius, present in the clusters, emits X-rays, which renders the cluster visible for space telescopes such as XMM-Newton. Detailed analyses of these X-rays tell astronomers more about the composition of the gas and accordingly, its origin.

What was so intriguing about the two X-ray spots in cluster Abell 3128 was the fact that although they had the same size and brightness, the gas clouds seemed to have completely different compositions. Werner: ‘While one spot was clearly caused by a hot gas cloud rich in metals released by supernova explosions in the galaxies, the other spot seemed to contain a much lower amount of metals than any other cluster previously observed. What we observed completely contradicted the current theories about how large structures in the universe arise.’

The observations with the XMM-Newton made the surprise complete. The gas cloud behind the puzzling X-ray spot was found to be 4.6 billion light years away, at least six times further than cluster Abell 3128. ‘We were therefore looking at two completely different objects, which from our perspective were in exactly the same line of sight’, says Norbert Werner.

Foam bath
‘The research into this large cluster of galaxies mainly centres on the question as to how the large structures of the universe have been formed’, explains project leader Jelle Kaastra. According to current insights, material is spread throughout the universe as a web of thread-like structures of rarefied hot gas: the cosmic web. Between these threads are cavities that are becoming increasingly larger as the universe expands. ‘Compare it to bubbles in a bubble bath’, says the astronomer. The density of the material is highest at the intersections in the web. Therefore that is where clusters of galaxies develop.

Due to their enormous mass and attractive force, the clusters have their own dynamics. Kaastra: ‘They attract each other, collide and fly through each other; a whole host of things happen that we can study with X-ray telescopes such as the XMM-Newton.’

XMM-Newton is the X-ray telescope of the European Space Agency (ESA) for which SRON built an instrument capable of analysing the X-rays in detail. XMM-Newton was launched in 1999 from French Guyana and still functions superbly. ESA recently extended the operation of the satellite for a further 5 years.

Jasper Wamsteker | alfa
Further information:
http://www.sron.nl/

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>