Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space telescope unveils hidden cosmic giant

14.12.2007
Astronomers from SRON Netherlands Institute for Space Research have discovered a new cluster of galaxies, hidden behind a previously identified cluster of galaxies. The recently exposed cosmic giant is apparently just as bright as the first group, but is six times further away. The astronomers made the discovery as part of an international team using the space telescope XMM-Newton.

Being fooled by a cosmic giant is no laughing matter for an astronomer. For years astronomers racked their brains over the relation between two in X-rays equally bright and large regions in the cluster of galaxies known as Abell 3128. ‘That is the charm of science’, says Norbert Werner, PhD student at SRON. ’You are always finding things that you did not expect.’

Clusters of galaxies are the largest structures in the universe. They consist of tens to hundreds of massive galaxies, of which each in turn consists of hundreds of billions of stars. Gravity is the binding factor. The hot gas of tens of millions degrees Celsius, present in the clusters, emits X-rays, which renders the cluster visible for space telescopes such as XMM-Newton. Detailed analyses of these X-rays tell astronomers more about the composition of the gas and accordingly, its origin.

What was so intriguing about the two X-ray spots in cluster Abell 3128 was the fact that although they had the same size and brightness, the gas clouds seemed to have completely different compositions. Werner: ‘While one spot was clearly caused by a hot gas cloud rich in metals released by supernova explosions in the galaxies, the other spot seemed to contain a much lower amount of metals than any other cluster previously observed. What we observed completely contradicted the current theories about how large structures in the universe arise.’

The observations with the XMM-Newton made the surprise complete. The gas cloud behind the puzzling X-ray spot was found to be 4.6 billion light years away, at least six times further than cluster Abell 3128. ‘We were therefore looking at two completely different objects, which from our perspective were in exactly the same line of sight’, says Norbert Werner.

Foam bath
‘The research into this large cluster of galaxies mainly centres on the question as to how the large structures of the universe have been formed’, explains project leader Jelle Kaastra. According to current insights, material is spread throughout the universe as a web of thread-like structures of rarefied hot gas: the cosmic web. Between these threads are cavities that are becoming increasingly larger as the universe expands. ‘Compare it to bubbles in a bubble bath’, says the astronomer. The density of the material is highest at the intersections in the web. Therefore that is where clusters of galaxies develop.

Due to their enormous mass and attractive force, the clusters have their own dynamics. Kaastra: ‘They attract each other, collide and fly through each other; a whole host of things happen that we can study with X-ray telescopes such as the XMM-Newton.’

XMM-Newton is the X-ray telescope of the European Space Agency (ESA) for which SRON built an instrument capable of analysing the X-rays in detail. XMM-Newton was launched in 1999 from French Guyana and still functions superbly. ESA recently extended the operation of the satellite for a further 5 years.

Jasper Wamsteker | alfa
Further information:
http://www.sron.nl/

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>