Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space telescope unveils hidden cosmic giant

14.12.2007
Astronomers from SRON Netherlands Institute for Space Research have discovered a new cluster of galaxies, hidden behind a previously identified cluster of galaxies. The recently exposed cosmic giant is apparently just as bright as the first group, but is six times further away. The astronomers made the discovery as part of an international team using the space telescope XMM-Newton.

Being fooled by a cosmic giant is no laughing matter for an astronomer. For years astronomers racked their brains over the relation between two in X-rays equally bright and large regions in the cluster of galaxies known as Abell 3128. ‘That is the charm of science’, says Norbert Werner, PhD student at SRON. ’You are always finding things that you did not expect.’

Clusters of galaxies are the largest structures in the universe. They consist of tens to hundreds of massive galaxies, of which each in turn consists of hundreds of billions of stars. Gravity is the binding factor. The hot gas of tens of millions degrees Celsius, present in the clusters, emits X-rays, which renders the cluster visible for space telescopes such as XMM-Newton. Detailed analyses of these X-rays tell astronomers more about the composition of the gas and accordingly, its origin.

What was so intriguing about the two X-ray spots in cluster Abell 3128 was the fact that although they had the same size and brightness, the gas clouds seemed to have completely different compositions. Werner: ‘While one spot was clearly caused by a hot gas cloud rich in metals released by supernova explosions in the galaxies, the other spot seemed to contain a much lower amount of metals than any other cluster previously observed. What we observed completely contradicted the current theories about how large structures in the universe arise.’

The observations with the XMM-Newton made the surprise complete. The gas cloud behind the puzzling X-ray spot was found to be 4.6 billion light years away, at least six times further than cluster Abell 3128. ‘We were therefore looking at two completely different objects, which from our perspective were in exactly the same line of sight’, says Norbert Werner.

Foam bath
‘The research into this large cluster of galaxies mainly centres on the question as to how the large structures of the universe have been formed’, explains project leader Jelle Kaastra. According to current insights, material is spread throughout the universe as a web of thread-like structures of rarefied hot gas: the cosmic web. Between these threads are cavities that are becoming increasingly larger as the universe expands. ‘Compare it to bubbles in a bubble bath’, says the astronomer. The density of the material is highest at the intersections in the web. Therefore that is where clusters of galaxies develop.

Due to their enormous mass and attractive force, the clusters have their own dynamics. Kaastra: ‘They attract each other, collide and fly through each other; a whole host of things happen that we can study with X-ray telescopes such as the XMM-Newton.’

XMM-Newton is the X-ray telescope of the European Space Agency (ESA) for which SRON built an instrument capable of analysing the X-rays in detail. XMM-Newton was launched in 1999 from French Guyana and still functions superbly. ESA recently extended the operation of the satellite for a further 5 years.

Jasper Wamsteker | alfa
Further information:
http://www.sron.nl/

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>