Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Queen Mary scientists shed light on a mysterious particle

Physicists at Queen Mary, University of London, have begun looking deep into the Earth to study some of nature's weirdest particles -- neutrinos

Starting from the end of November, Queen Mary's Particle Physics Research Centre is the sole recipient of the T2K experiment data. The T2K Collaboration is a 500-strong alliance of scientists in 12 countries, who have come together to investigate the ghostly neutrino.

Physicist Dr Francesca Di Lodovico said: "Trillions of neutrinos pass through our bodies every second, but you don't notice; they pass through space and the Earth with almost no effect. This makes neutrinos very difficult to study and yet they are thought to play a fundamental role in the formation of the Universe and understanding where we came from."

Neutrinos come from outer space, either shot out from the Sun, or left over from the Big Bang. But despite their abundance, techniques to understand their nature have only been developed in the last few decades, giving surprising results.

"Theories predict there should be three types of neutrinos," Dr Di Lodovico explained. "Unexpectedly, early data seems to suggest that they can change type from one to another, an observation which has profound implications on our understanding of the Universe."

By firing the most intense neutrino beam ever designed, underground from Tokai on the east coast of Japan to a detector on the country's west coast, it is now possible to observe what happens to the particles as they travel through our planet. Do they change type? And if so, why?

Scientists hope that neutrinos could be the key to understanding how the Universe has evolved over time and teach us more about deep-space events like supernovas, active galaxies and gamma-ray bursts. They could even explain one of the biggest mysteries of the universe; why we have lots of 'matter', but only tiny amounts of 'anti-matter'.

Dr Di Lodovico says: "T2K will quickly advance our understanding of the strange properties of the enigmatic neutrino to unprecedented precision. Within a year, we will be able explore neutrino properties beyond the reach of the current experiments and shed light on the unknown."

Queen Mary's world-renowned particle physicists have made a significant contribution to the international experiment. As well as aiding the design and construction of the main detector, several group members are also involved in using the data now being collected to explore the properties of neutrinos, using powerful computers available at the College.

Simon Levey | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists invented method of catching bacteria with 'photonic hook'
20.03.2018 | ITMO University

nachricht A new kind of quantum bits in two dimensions
19.03.2018 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Scientists invented method of catching bacteria with 'photonic hook'

20.03.2018 | Physics and Astronomy

Next Generation Cryptography

20.03.2018 | Information Technology

Science & Research
Overview of more VideoLinks >>>