Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen Mary scientists shed light on a mysterious particle

17.12.2009
Physicists at Queen Mary, University of London, have begun looking deep into the Earth to study some of nature's weirdest particles -- neutrinos

Starting from the end of November, Queen Mary's Particle Physics Research Centre is the sole recipient of the T2K experiment data. The T2K Collaboration is a 500-strong alliance of scientists in 12 countries, who have come together to investigate the ghostly neutrino.

Physicist Dr Francesca Di Lodovico said: "Trillions of neutrinos pass through our bodies every second, but you don't notice; they pass through space and the Earth with almost no effect. This makes neutrinos very difficult to study and yet they are thought to play a fundamental role in the formation of the Universe and understanding where we came from."

Neutrinos come from outer space, either shot out from the Sun, or left over from the Big Bang. But despite their abundance, techniques to understand their nature have only been developed in the last few decades, giving surprising results.

"Theories predict there should be three types of neutrinos," Dr Di Lodovico explained. "Unexpectedly, early data seems to suggest that they can change type from one to another, an observation which has profound implications on our understanding of the Universe."

By firing the most intense neutrino beam ever designed, underground from Tokai on the east coast of Japan to a detector on the country's west coast, it is now possible to observe what happens to the particles as they travel through our planet. Do they change type? And if so, why?

Scientists hope that neutrinos could be the key to understanding how the Universe has evolved over time and teach us more about deep-space events like supernovas, active galaxies and gamma-ray bursts. They could even explain one of the biggest mysteries of the universe; why we have lots of 'matter', but only tiny amounts of 'anti-matter'.

Dr Di Lodovico says: "T2K will quickly advance our understanding of the strange properties of the enigmatic neutrino to unprecedented precision. Within a year, we will be able explore neutrino properties beyond the reach of the current experiments and shed light on the unknown."

Queen Mary's world-renowned particle physicists have made a significant contribution to the international experiment. As well as aiding the design and construction of the main detector, several group members are also involved in using the data now being collected to explore the properties of neutrinos, using powerful computers available at the College.

Simon Levey | EurekAlert!
Further information:
http://www.qmul.ac.uk

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>