Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Quantum Simulator Gives Clues About Magnetism


Science paper reveals new clues about how ultracold atoms interact, including how they can switch from non-interacting to strongly interacting in only a millisecond.

Assembling the puzzles of quantum materials is, in some ways, like dipping a wire hanger into a vat of soapy water, says CIFAR (Canadian Institute for Advanced Research) Fellow Joseph Thywissen (University of Toronto).

Long before mathematical equations could explain the shapes and angles in the soap foams, mathematicians conjectured that soap films naturally found the geometry that minimized surface area, thus solving the problem of minimal surfaces. They could be created simply by blowing soap bubbles.

At the University of Toronto’s Ultracold Atoms Lab, Thywissen and his team strive to answer what he calls “soap bubble” questions — deep mysteries of the enigmatic quantum materials world that simulations can help us solve. Since the electrons within quantum materials, such as superconductors, zoom far too quickly for careful observation, Thywissen’s team uses ultracold gases instead, in this way simulating one quantum system with another, more easily studied, quantum system.

“Simulation gives you the answers but not the theory behind them,” says Thywissen.

Thywissen’s lab has revealed some of these answers in a new paper about the magnetism and diffusion of atoms in ultracold gases, published in the journal Science. The researchers optically trapped a cloud of gas a billion times colder than air in a very low-pressure vacuum.

They oriented the ultracold atoms, which behave like microscopic magnets, to make them all point in the same direction in space, then manipulated the spins with an effect that’s regularly used in hospitals for MRIs, called a spin echo.

Twisting up the direction into a corkscrew pattern and then untwisting it, they measured the strength of interactions between atoms. They observed that at first the atoms did not interact, but one millisecond later they were strongly interacting and correlated.

This rapid change suggested that something was happening to alter the atoms’ magnetism as the process unfolded.

“The Pauli Principle forbids identical ultracold atoms from interacting, so we knew something was scrambling the spins at a microscopic level,” Thywissen says.

What was happening, the researchers learned next, was diffusion — the same process that takes place when the smell of perfume fills the air of a room, for example.

“If I open a bottle of perfume in the front of the room, it takes a little while for those particles to diffuse to the back of the room,” Thywissen says. “They bump into other particles on the way, but eventually get there. You can imagine that the more particles bump into each other, the slower diffusion occurs.”

Cranking up interactions to their maximum allowed level, the Toronto team tried to see how slow diffusion could be. They lowered temperature below a millionth of a degree above absolute zero. You might guess that the speed of diffusion would eventually reach zero, but instead the experiment found a lower limit to diffusion.

“Whereas cars on the freeway need to drive below the speed limit, strongly interacting spins need to diffuse above a quantum speed limit,” Thywissen says.

Ultracold atoms are just one of a larger family of strongly interacting materials, that also include superconductors and magnetic materials. Thywissen is a member of the CIFAR Quantum Materials program, which is developing an understanding of these materials’ novel properties. Cold atoms offer a promising way to explore the mystery of how electrons self-organize to exhibit unusual and valuable properties, such as superconductivity. Quantum materials contain mysteries that have challenged physicists for decades.

"Our measurements imply a diffusivity bound whose mathematical simplicity is exciting: it hints at a universal principle about spin transport, waiting to be uncovered,” he says.

Thywissen says CIFAR’s support helped make this successful experiment possible.

“CIFAR enabled me to assemble a world-class team.”

The authors on the paper “Transverse Demagnetization Dynamics of a Unitary Fermi Gas,” published in Science, are Alma Bardon, Scott Beattie, Chris Luciuk, Will Cairncross, Daniel Fine, Nathan Cheng, Graham Edge, Edward Taylor, Shizhong Zhang, Stefan Trotzky and Joseph Thywissen.


CIFAR brings together extraordinary scholars and scientists from around the world to address questions of global importance. Based in Toronto, Canada, CIFAR is a global research organization comprising nearly 400 fellows, scholars and advisors from more than 100 institutions in 16 countries. The Institute helps to resolve the world’s major challenges by contributing transformative knowledge, acting as a catalyst for change, and developing a new generation of research leaders. Established in 1982, CIFAR partners with the Government of Canada, provincial governments, individuals, foundations, corporations and research institutions to extend our impact in the world.

CIFAR’s program in Quantum Materials invents and explores materials whose novel and unusual electronic properties, like superconductivity, could revolutionize technology.

For more information including images, contact:

Lindsay Jolivet
Writer & Media Relations Specialist
Canadian Institute for Advanced Research

Joseph Thywissen
University of Toronto
416-978-2941 (Office)

Dominic Ali | newswise

Further reports about: CIFAR Magnetism Quantum Simulator Toronto diffuse electrons interactions materials microscopic superconductors

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>