Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Simulator Gives Clues About Magnetism

19.05.2014

Science paper reveals new clues about how ultracold atoms interact, including how they can switch from non-interacting to strongly interacting in only a millisecond.

Assembling the puzzles of quantum materials is, in some ways, like dipping a wire hanger into a vat of soapy water, says CIFAR (Canadian Institute for Advanced Research) Fellow Joseph Thywissen (University of Toronto).

Long before mathematical equations could explain the shapes and angles in the soap foams, mathematicians conjectured that soap films naturally found the geometry that minimized surface area, thus solving the problem of minimal surfaces. They could be created simply by blowing soap bubbles.

At the University of Toronto’s Ultracold Atoms Lab, Thywissen and his team strive to answer what he calls “soap bubble” questions — deep mysteries of the enigmatic quantum materials world that simulations can help us solve. Since the electrons within quantum materials, such as superconductors, zoom far too quickly for careful observation, Thywissen’s team uses ultracold gases instead, in this way simulating one quantum system with another, more easily studied, quantum system.

“Simulation gives you the answers but not the theory behind them,” says Thywissen.

Thywissen’s lab has revealed some of these answers in a new paper about the magnetism and diffusion of atoms in ultracold gases, published in the journal Science. The researchers optically trapped a cloud of gas a billion times colder than air in a very low-pressure vacuum.

They oriented the ultracold atoms, which behave like microscopic magnets, to make them all point in the same direction in space, then manipulated the spins with an effect that’s regularly used in hospitals for MRIs, called a spin echo.

Twisting up the direction into a corkscrew pattern and then untwisting it, they measured the strength of interactions between atoms. They observed that at first the atoms did not interact, but one millisecond later they were strongly interacting and correlated.

This rapid change suggested that something was happening to alter the atoms’ magnetism as the process unfolded.

“The Pauli Principle forbids identical ultracold atoms from interacting, so we knew something was scrambling the spins at a microscopic level,” Thywissen says.

What was happening, the researchers learned next, was diffusion — the same process that takes place when the smell of perfume fills the air of a room, for example.

“If I open a bottle of perfume in the front of the room, it takes a little while for those particles to diffuse to the back of the room,” Thywissen says. “They bump into other particles on the way, but eventually get there. You can imagine that the more particles bump into each other, the slower diffusion occurs.”

Cranking up interactions to their maximum allowed level, the Toronto team tried to see how slow diffusion could be. They lowered temperature below a millionth of a degree above absolute zero. You might guess that the speed of diffusion would eventually reach zero, but instead the experiment found a lower limit to diffusion.

“Whereas cars on the freeway need to drive below the speed limit, strongly interacting spins need to diffuse above a quantum speed limit,” Thywissen says.

Ultracold atoms are just one of a larger family of strongly interacting materials, that also include superconductors and magnetic materials. Thywissen is a member of the CIFAR Quantum Materials program, which is developing an understanding of these materials’ novel properties. Cold atoms offer a promising way to explore the mystery of how electrons self-organize to exhibit unusual and valuable properties, such as superconductivity. Quantum materials contain mysteries that have challenged physicists for decades.

"Our measurements imply a diffusivity bound whose mathematical simplicity is exciting: it hints at a universal principle about spin transport, waiting to be uncovered,” he says.

Thywissen says CIFAR’s support helped make this successful experiment possible.

“CIFAR enabled me to assemble a world-class team.”

***
The authors on the paper “Transverse Demagnetization Dynamics of a Unitary Fermi Gas,” published in Science, are Alma Bardon, Scott Beattie, Chris Luciuk, Will Cairncross, Daniel Fine, Nathan Cheng, Graham Edge, Edward Taylor, Shizhong Zhang, Stefan Trotzky and Joseph Thywissen.

About CIFAR

CIFAR brings together extraordinary scholars and scientists from around the world to address questions of global importance. Based in Toronto, Canada, CIFAR is a global research organization comprising nearly 400 fellows, scholars and advisors from more than 100 institutions in 16 countries. The Institute helps to resolve the world’s major challenges by contributing transformative knowledge, acting as a catalyst for change, and developing a new generation of research leaders. Established in 1982, CIFAR partners with the Government of Canada, provincial governments, individuals, foundations, corporations and research institutions to extend our impact in the world.

CIFAR’s program in Quantum Materials invents and explores materials whose novel and unusual electronic properties, like superconductivity, could revolutionize technology.

For more information including images, contact:

Lindsay Jolivet
Writer & Media Relations Specialist
Canadian Institute for Advanced Research
lindsay.jolivet@cifar.ca
416-971-4876

Joseph Thywissen
University of Toronto
jht@physics.utoronto.ca
416-978-2941 (Office)

Dominic Ali | newswise

Further reports about: CIFAR Magnetism Quantum Simulator Toronto diffuse electrons interactions materials microscopic superconductors

More articles from Physics and Astronomy:

nachricht Winds a quarter the speed of light spotted leaving mysterious binary systems
29.04.2016 | University of Cambridge

nachricht Possible Extragalactic Source of High-Energy Neutrinos
28.04.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>