Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The quantum ohm comes from PTB

30.04.2010
With its new molecular beam epitaxy facility, PTB continues to be the only metrology institute to produce primary quantum Hall effect resistance standards

For a long time, the electrical units are feeling at home in the quantum world. In the endeavour to trace the entire International System of Units (SI) back to natural constants, they have long been in the lead - because, among other things, the resistance can be realized with the aid of the quantum Hall effect. The Physikalisch-Technische Bundesanstalt (PTB) is the only metrology institute worldwide that can produce the respective primary standards.

So that this would still be the case after the purchase of a more modern molecular beam epitaxy (MBE) facility, the scientists had to come up with some tricks. The new facility is to primarily serve for single-electron tunnelling research - and thus, for instance, for the question of whether also the unit of current ampere can be traced back to natural constants. At first it seemed less suited to the quantum ohm. But by means of the specific alteration of the growth parameters and the layer structure of the crystals, PTB scientists succeeded in the feat of making the facility equally fit for both tasks. Thus, PTB was able to safeguard its competence to also in future be able to produce its own quantum resistance standards.

Since 1990, the unit of resistance "ohm" has been traced back to a natural constant, i.e. the von Klitzing constant RK. Five years before, its discoverer of the same name had been awarded the Nobel Prize, because he had found out that a phenomenon already observed before (i.e. steps of constant voltage which are generated at low temperatures and strong magnetic fields vertical to a current) does not depend on a material property or the magnetic field strength, but only on the natural constants "Planck's constant" h and "elementary charge" e. The ratio h/e2 was given the name "von Klitzing constant" and became the universal reference quantity for resistance measurements which can be exactly reproduced anywhere in the world - provided that the suitable technique and sufficient know-how are available.

The required precision measurements are rather sophisticated, as they must be performed at low temperatures of 1.4 K (also – 272 °C) and very high magnetic fields of 10 T. At PTB, the value of the von Klitzing constant can be measured up to a relative measurement uncertainty of ±2 · 10–9, i.e. exact to nine decimals, and serves in practice for the calibration of test resistances. Starting point for these calibrations are quantum Hall primary standards which have so far been prepared at PTB in an older conventional molecular beam epitaxy(MBE) facility.

Decisive for the properties which a quantum Hall standard will have later is a so-called two-dimensional electron gas (2DEG), an ultra-thin (only approx. 10 nm in width) conducting layer in a semi-conductor layer structure of GaAs and AlGaAs. The density of the electrons must have a specific value and their mobility must not be too high. These parameters are already determined during the GaAs crystal growth - and this has for years already been successfully performed in the facility used so far.

When PTB bought a new MBE facility especially for highly mobile electron systems for additional research tasks – among other things for single electron tunneling – the question arose whether a fundamental problem could be overcome. With the facility, electron mobilities of more than 10 million cm2/Vs can be achieved and there are almost no residual impurities any more which impede the flow of the electrons. Up to now, it has not been possible to simultaneously generate low-mobility samples in such a facility.

For the investigation, quantum Hall resistances were generated in the new MBE facility at modified growth conditions: at lower temperatures and with a much smaller distance between the electron gas and the doped layer. This leads to a lower mobility without additional impurities. The values of these quantum Hall resistances were compared with the best quantum Hall standard of PTB from the conventional MBE facility. The result of the precision measurements is rather impressive, because the resistance values of the two samples agree within the excellent measurement uncertainty of ±2 · 10–9.

The new MBE facility is, thus, regarded as validated and the supply of PTB with quantum Hall standards has been put on a wider basis. The results will be presented at the forthcoming international conference for electro-magnetic precision measurements (CPEM) which will take place from June 13 to 18, 2010, in Daejeon/ Korea.

Contact:
Klaus Pierz, PTB Working Group 2.53 Low dimensional Electron Systems,
Tel.: +49531 592-2412,
e-mail: klaus.pierz@ptb.de

Dr. Klaus Pierz | EurekAlert!
Further information:
http://www.ptb.de
http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2010/pitext/pi100318.html

Further reports about: GaAs VCSELs MBE Nobel Prize PTB electron gas magnetic field

More articles from Physics and Astronomy:

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

nachricht Astronomers probe swirling particles in halo of starburst galaxy
28.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>