Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The quantum ohm comes from PTB

30.04.2010
With its new molecular beam epitaxy facility, PTB continues to be the only metrology institute to produce primary quantum Hall effect resistance standards

For a long time, the electrical units are feeling at home in the quantum world. In the endeavour to trace the entire International System of Units (SI) back to natural constants, they have long been in the lead - because, among other things, the resistance can be realized with the aid of the quantum Hall effect. The Physikalisch-Technische Bundesanstalt (PTB) is the only metrology institute worldwide that can produce the respective primary standards.

So that this would still be the case after the purchase of a more modern molecular beam epitaxy (MBE) facility, the scientists had to come up with some tricks. The new facility is to primarily serve for single-electron tunnelling research - and thus, for instance, for the question of whether also the unit of current ampere can be traced back to natural constants. At first it seemed less suited to the quantum ohm. But by means of the specific alteration of the growth parameters and the layer structure of the crystals, PTB scientists succeeded in the feat of making the facility equally fit for both tasks. Thus, PTB was able to safeguard its competence to also in future be able to produce its own quantum resistance standards.

Since 1990, the unit of resistance "ohm" has been traced back to a natural constant, i.e. the von Klitzing constant RK. Five years before, its discoverer of the same name had been awarded the Nobel Prize, because he had found out that a phenomenon already observed before (i.e. steps of constant voltage which are generated at low temperatures and strong magnetic fields vertical to a current) does not depend on a material property or the magnetic field strength, but only on the natural constants "Planck's constant" h and "elementary charge" e. The ratio h/e2 was given the name "von Klitzing constant" and became the universal reference quantity for resistance measurements which can be exactly reproduced anywhere in the world - provided that the suitable technique and sufficient know-how are available.

The required precision measurements are rather sophisticated, as they must be performed at low temperatures of 1.4 K (also – 272 °C) and very high magnetic fields of 10 T. At PTB, the value of the von Klitzing constant can be measured up to a relative measurement uncertainty of ±2 · 10–9, i.e. exact to nine decimals, and serves in practice for the calibration of test resistances. Starting point for these calibrations are quantum Hall primary standards which have so far been prepared at PTB in an older conventional molecular beam epitaxy(MBE) facility.

Decisive for the properties which a quantum Hall standard will have later is a so-called two-dimensional electron gas (2DEG), an ultra-thin (only approx. 10 nm in width) conducting layer in a semi-conductor layer structure of GaAs and AlGaAs. The density of the electrons must have a specific value and their mobility must not be too high. These parameters are already determined during the GaAs crystal growth - and this has for years already been successfully performed in the facility used so far.

When PTB bought a new MBE facility especially for highly mobile electron systems for additional research tasks – among other things for single electron tunneling – the question arose whether a fundamental problem could be overcome. With the facility, electron mobilities of more than 10 million cm2/Vs can be achieved and there are almost no residual impurities any more which impede the flow of the electrons. Up to now, it has not been possible to simultaneously generate low-mobility samples in such a facility.

For the investigation, quantum Hall resistances were generated in the new MBE facility at modified growth conditions: at lower temperatures and with a much smaller distance between the electron gas and the doped layer. This leads to a lower mobility without additional impurities. The values of these quantum Hall resistances were compared with the best quantum Hall standard of PTB from the conventional MBE facility. The result of the precision measurements is rather impressive, because the resistance values of the two samples agree within the excellent measurement uncertainty of ±2 · 10–9.

The new MBE facility is, thus, regarded as validated and the supply of PTB with quantum Hall standards has been put on a wider basis. The results will be presented at the forthcoming international conference for electro-magnetic precision measurements (CPEM) which will take place from June 13 to 18, 2010, in Daejeon/ Korea.

Contact:
Klaus Pierz, PTB Working Group 2.53 Low dimensional Electron Systems,
Tel.: +49531 592-2412,
e-mail: klaus.pierz@ptb.de

Dr. Klaus Pierz | EurekAlert!
Further information:
http://www.ptb.de
http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2010/pitext/pi100318.html

Further reports about: GaAs VCSELs MBE Nobel Prize PTB electron gas magnetic field

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>