Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Quantum Odyssey in an Ion Trap

MPQ scientists demonstrate quantum walks with single trapped ions.

Many classical algorithms in computer science include so called "random walks", where possible ways to solve a problem are chosen at random. Algorithms of that kind are found in fields like physics, biology, economics, and even psychology.

In a quantum labyrinth all possible paths are in a state of superposition and can be taken simultaneously. This gives rise to interferences that lead to strange phenomena such as the self-encounter of the quantum walker. Due to these \"tricks\" the exit out of the maze, e.g. die solution of an algorithm or the most efficient way of energy transfer in plants, can be found dramatically faster than with classical methods. MPQ / Tobias Schätz

In quantum systems these decisions become obsolete because all possible paths are in a state of superposition and can be followed at the same time. As a consequence interferences occur that give rise to new phenomena.

E.g., at crossings a quantum walker can encounter himself. Quantum walks could substantially speed up algorithms used for quantum systems. But they can also lead to new insight into the behavior of mesoscopic systems that mark the border between the classical and the quantum mechanical world. In a "proof-of-principle"-experiment, using an ion trap, Dr. Tobias Schätz, leader of the Junior Research Group "Quantum Simulations" at Max Planck Institute of Quantum Optics in Garching near Munich, and his collaborators were now able to unambiguously demonstrate the difference between the classical and the quantum mechanical "Odyssey" of an ion (Physical Review Letters, 28. August 2009).

Every time we arrive at a crossroad, we have to choose - perhaps by flipping a coin - the route to tackle. After several crossings and choices we will have followed a few out of many possible paths, maybe some of them more frequently than others.

A quantum walker in contrast does not have to decide - indeed there is no choice. At each coin toss a superposition of head and tail is generated, allowing the walker to follow all the possible paths simultaneously. As a consequence strange phenomena may show up. E.g., if paths recombine again at subsequent crossings, the walker can meet himself - and due to interference - increase his probability to be at this crossing or even disappear.

In the experiment described here a single magnesium ion stored in an electromagnetic trap plays the role of the quantum walker. Its motional ground state represents the initial state of the walk. By irradiation of radiofrequency pulses a superposition of electronic states gets excited. This simulation of the coin toss results in a superposition of "left" and "right" decision. Now ultraviolet light of a well chosen frequency gives the ion the necessary "push" to get moving. Depending on its particular electronic state the ion gets pushed to the left or to the right, whereby a superposition of the two permitted motions is generated. Therefore, quantum walks are connected with a high degree of entanglement between the two values of the coin and the two motion possibilities of the ion.

Three times the actions "coin toss" and "change of position" are repeated; this is the least requirement for the observation of quantum effects. Once this quantum evolution is completed the state of the coin and the particular end position of the ion gets detected. This procedure exploits the fact that only one of the coin states allows the ion to fluoresce. From the statistics of about a thousand measurements the physicists infer how often the ion has moved to the right or to the left. The experimental data clearly confirm the theoretical prediction of an unbalance between the two directions, in contrast of what would be expected for a classical system.

In this experiment the group of Dr. Schätz has clearly revealed the difference of a quantum system to its classical counterpart by allowing the walker/ion to take all classical paths simultaneously: Quantum interferences enforce asymmetric, non-classical distributions in the highly entangled coin and position states. Yet the number of repetition steps is limited by non-linear effects. To overcome these restrictions the scientists now propose an altered protocol that would make it possible to scale the quantum walk to many, in principle to several hundreds of steps.

Quantum walks are predicted to be of fundamental interest for many "applications". Searching for the right path might get dramatically boosted in efficiency if one does not have to try out randomly each individual one but all of them simultaneously. This mind puzzling behaviour could, for example, help to enhance the power of search algorithms in computational science. But it is, for example, also suspected to be responsible for the high efficiency of energy transfer on multiple paths in plants, far beyond what human beings reach with their yet classical approach.

[Tobias Schätz/Olivia Meyer-Streng]

Original publication:
H. Schmitz, R. Matjeschk, C. Schneider, J. Glückert, M. Enderlein, T. Huber and T. Schätz
"Quantum walk of a trapped ion in phase space"
Physical Review Letters, 28. August 2009
Dr. Tobias Schätz
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 - 89 / 32905 - 199
Fax: +49 - 89 / 32905 - 311
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 - 89 / 32905 - 213
Fax: +49 - 89 / 32905 - 200

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>



Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

More VideoLinks >>>