Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum gas microscope offers glimpse of quirky ultracold atoms

06.11.2009
Research creates a readout system for quantum simulation and computation

Physicists at Harvard University have created a quantum gas microscope that can be used to observe single atoms at temperatures so low the particles follow the rules of quantum mechanics, behaving in bizarre ways.

The work, published this week in the journal Nature, represents the first time scientists have detected single atoms in a crystalline structure made solely of light, called a Bose Hubbard optical lattice. It's part of scientists' efforts to use ultracold quantum gases to understand and develop novel quantum materials.

"Ultracold atoms in optical lattices can be used as a model to help understand the physics behind superconductivity or quantum magnetism, for example," says senior author Markus Greiner, an assistant professor of physics at Harvard and an affiliate of the Harvard-MIT Center for Ultracold Atoms. "We expect that our technique, which bridges the gap between earlier microscopic and macroscopic approaches to the study of quantum systems, will help in quantum simulations of condensed matter systems, and also find applications in quantum information processing."

The quantum gas microscope developed by Greiner and his colleagues is a high-resolution device capable of viewing single atoms -- in this case, atoms of rubidium -- occupying individual, closely spaced lattice sites. The rubidium atoms are cooled to just 5 billionths of a degree above absolute zero (-273 degrees Celsius).

"At such low temperatures, atoms follow the rules of quantum mechanics, causing them to behave in very unexpected ways," explains first author Waseem S. Bakr, a graduate student in Harvard's Department of Physics. "Quantum mechanics allows atoms to quickly tunnel around within the lattice, move around with no resistance, and even be 'delocalized' over the entire lattice. With our microscope we can individually observe tens of thousands of atoms working together to perform these amazing feats."

In their paper, Bakr, Greiner, and colleagues present images of single rubidium atoms confined to an optical lattice created through projections of a laser-generated holographic pattern. The neighboring rubidium atoms are just 640 nanometers apart, allowing them to quickly tunnel their way through the lattice.

Confining a quantum gas -- such as a Bose–Einstein condensate -- in such an optically generated lattice creates a system that can be used to model complex phenomena in condensed-matter physics, such as superfluidity. Until now, only the bulk properties of such systems could be studied, but the new microscope's ability to detect arrays of thousands of single atoms gives scientists what amounts to a new workshop for tinkering with the fundamental properties of matter, making it possible to study these simulated systems in much more detail, and possibly also forming the basis of a single-site readout system for quantum computation.

"There are many unsolved questions regarding quantum materials, such as high-temperature superconductors that lose all electrical resistance if they are cooled to moderate temperatures," Greiner says. "We hope this ultracold atom model system can provide answers to some of these important questions, paving the way for creating novel quantum materials with as-yet unknown properties."

Greiner's co-authors on the Nature paper are Waseem S. Bakr, Jonathon I. Gillen, Amy Peng, and Simon Foelling, all of Harvard's Department of Physics and the Harvard-MIT Center for Ultracold Atoms. Their work was supported by the National Science Foundation, the Air Force Office of Scientific Research, the Army Research Office, the Defense Advanced Research Projects Agency, and the Alfred P. Sloan Foundation.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>