Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum gas microscope offers glimpse of quirky ultracold atoms

06.11.2009
Research creates a readout system for quantum simulation and computation

Physicists at Harvard University have created a quantum gas microscope that can be used to observe single atoms at temperatures so low the particles follow the rules of quantum mechanics, behaving in bizarre ways.

The work, published this week in the journal Nature, represents the first time scientists have detected single atoms in a crystalline structure made solely of light, called a Bose Hubbard optical lattice. It's part of scientists' efforts to use ultracold quantum gases to understand and develop novel quantum materials.

"Ultracold atoms in optical lattices can be used as a model to help understand the physics behind superconductivity or quantum magnetism, for example," says senior author Markus Greiner, an assistant professor of physics at Harvard and an affiliate of the Harvard-MIT Center for Ultracold Atoms. "We expect that our technique, which bridges the gap between earlier microscopic and macroscopic approaches to the study of quantum systems, will help in quantum simulations of condensed matter systems, and also find applications in quantum information processing."

The quantum gas microscope developed by Greiner and his colleagues is a high-resolution device capable of viewing single atoms -- in this case, atoms of rubidium -- occupying individual, closely spaced lattice sites. The rubidium atoms are cooled to just 5 billionths of a degree above absolute zero (-273 degrees Celsius).

"At such low temperatures, atoms follow the rules of quantum mechanics, causing them to behave in very unexpected ways," explains first author Waseem S. Bakr, a graduate student in Harvard's Department of Physics. "Quantum mechanics allows atoms to quickly tunnel around within the lattice, move around with no resistance, and even be 'delocalized' over the entire lattice. With our microscope we can individually observe tens of thousands of atoms working together to perform these amazing feats."

In their paper, Bakr, Greiner, and colleagues present images of single rubidium atoms confined to an optical lattice created through projections of a laser-generated holographic pattern. The neighboring rubidium atoms are just 640 nanometers apart, allowing them to quickly tunnel their way through the lattice.

Confining a quantum gas -- such as a Bose–Einstein condensate -- in such an optically generated lattice creates a system that can be used to model complex phenomena in condensed-matter physics, such as superfluidity. Until now, only the bulk properties of such systems could be studied, but the new microscope's ability to detect arrays of thousands of single atoms gives scientists what amounts to a new workshop for tinkering with the fundamental properties of matter, making it possible to study these simulated systems in much more detail, and possibly also forming the basis of a single-site readout system for quantum computation.

"There are many unsolved questions regarding quantum materials, such as high-temperature superconductors that lose all electrical resistance if they are cooled to moderate temperatures," Greiner says. "We hope this ultracold atom model system can provide answers to some of these important questions, paving the way for creating novel quantum materials with as-yet unknown properties."

Greiner's co-authors on the Nature paper are Waseem S. Bakr, Jonathon I. Gillen, Amy Peng, and Simon Foelling, all of Harvard's Department of Physics and the Harvard-MIT Center for Ultracold Atoms. Their work was supported by the National Science Foundation, the Air Force Office of Scientific Research, the Army Research Office, the Defense Advanced Research Projects Agency, and the Alfred P. Sloan Foundation.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>