Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum gas microscope offers glimpse of quirky ultracold atoms

06.11.2009
Research creates a readout system for quantum simulation and computation

Physicists at Harvard University have created a quantum gas microscope that can be used to observe single atoms at temperatures so low the particles follow the rules of quantum mechanics, behaving in bizarre ways.

The work, published this week in the journal Nature, represents the first time scientists have detected single atoms in a crystalline structure made solely of light, called a Bose Hubbard optical lattice. It's part of scientists' efforts to use ultracold quantum gases to understand and develop novel quantum materials.

"Ultracold atoms in optical lattices can be used as a model to help understand the physics behind superconductivity or quantum magnetism, for example," says senior author Markus Greiner, an assistant professor of physics at Harvard and an affiliate of the Harvard-MIT Center for Ultracold Atoms. "We expect that our technique, which bridges the gap between earlier microscopic and macroscopic approaches to the study of quantum systems, will help in quantum simulations of condensed matter systems, and also find applications in quantum information processing."

The quantum gas microscope developed by Greiner and his colleagues is a high-resolution device capable of viewing single atoms -- in this case, atoms of rubidium -- occupying individual, closely spaced lattice sites. The rubidium atoms are cooled to just 5 billionths of a degree above absolute zero (-273 degrees Celsius).

"At such low temperatures, atoms follow the rules of quantum mechanics, causing them to behave in very unexpected ways," explains first author Waseem S. Bakr, a graduate student in Harvard's Department of Physics. "Quantum mechanics allows atoms to quickly tunnel around within the lattice, move around with no resistance, and even be 'delocalized' over the entire lattice. With our microscope we can individually observe tens of thousands of atoms working together to perform these amazing feats."

In their paper, Bakr, Greiner, and colleagues present images of single rubidium atoms confined to an optical lattice created through projections of a laser-generated holographic pattern. The neighboring rubidium atoms are just 640 nanometers apart, allowing them to quickly tunnel their way through the lattice.

Confining a quantum gas -- such as a Bose–Einstein condensate -- in such an optically generated lattice creates a system that can be used to model complex phenomena in condensed-matter physics, such as superfluidity. Until now, only the bulk properties of such systems could be studied, but the new microscope's ability to detect arrays of thousands of single atoms gives scientists what amounts to a new workshop for tinkering with the fundamental properties of matter, making it possible to study these simulated systems in much more detail, and possibly also forming the basis of a single-site readout system for quantum computation.

"There are many unsolved questions regarding quantum materials, such as high-temperature superconductors that lose all electrical resistance if they are cooled to moderate temperatures," Greiner says. "We hope this ultracold atom model system can provide answers to some of these important questions, paving the way for creating novel quantum materials with as-yet unknown properties."

Greiner's co-authors on the Nature paper are Waseem S. Bakr, Jonathon I. Gillen, Amy Peng, and Simon Foelling, all of Harvard's Department of Physics and the Harvard-MIT Center for Ultracold Atoms. Their work was supported by the National Science Foundation, the Air Force Office of Scientific Research, the Army Research Office, the Defense Advanced Research Projects Agency, and the Alfred P. Sloan Foundation.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>